On free subgroups of finite exponent in circle groups of free nilpotent algebras

‎Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$‎. ‎Then $N$ is a group with respect to the circle composition‎. ‎We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups‎, ‎depending on the choice of $K$‎....

Full description

Bibliographic Details
Main Author: Juliane Hansmann
Format: Article
Language:English
Published: University of Isfahan 2019-06-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://ijgt.ui.ac.ir/article_22208_1d66e7d97c7526a72c80904843cf42a7.pdf
id doaj-cd485c8c3d6845e2b2fbd3d266fdc15b
record_format Article
spelling doaj-cd485c8c3d6845e2b2fbd3d266fdc15b2020-11-24T21:21:42ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692019-06-0182294010.22108/ijgt.2017.108014.145522208On free subgroups of finite exponent in circle groups of free nilpotent algebrasJuliane Hansmann0Department of Mathematics University of Kiel, Germany‎Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$‎. ‎Then $N$ is a group with respect to the circle composition‎. ‎We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups‎, ‎depending on the choice of $K$‎. ‎Moreover‎, ‎we get unique representations of the elements in terms of basic commutators‎. ‎In particular‎, ‎if $K$ is of characteristic $0$ the subgroup generated by $X$ is freely generated by $X$ as a nilpotent group‎.http://ijgt.ui.ac.ir/article_22208_1d66e7d97c7526a72c80904843cf42a7.pdf‎groups of finite exponent‎‎relatively free groups‎‎circle group‎‎free nilpotent algebra‎‎algebra group
collection DOAJ
language English
format Article
sources DOAJ
author Juliane Hansmann
spellingShingle Juliane Hansmann
On free subgroups of finite exponent in circle groups of free nilpotent algebras
International Journal of Group Theory
‎groups of finite exponent‎
‎relatively free groups‎
‎circle group‎
‎free nilpotent algebra‎
‎algebra group
author_facet Juliane Hansmann
author_sort Juliane Hansmann
title On free subgroups of finite exponent in circle groups of free nilpotent algebras
title_short On free subgroups of finite exponent in circle groups of free nilpotent algebras
title_full On free subgroups of finite exponent in circle groups of free nilpotent algebras
title_fullStr On free subgroups of finite exponent in circle groups of free nilpotent algebras
title_full_unstemmed On free subgroups of finite exponent in circle groups of free nilpotent algebras
title_sort on free subgroups of finite exponent in circle groups of free nilpotent algebras
publisher University of Isfahan
series International Journal of Group Theory
issn 2251-7650
2251-7669
publishDate 2019-06-01
description ‎Let $K$ be a commutative ring with identity and $N$ the free nilpotent $K$-algebra on a non-empty set $X$‎. ‎Then $N$ is a group with respect to the circle composition‎. ‎We prove that the subgroup generated by $X$ is relatively free in a suitable class of groups‎, ‎depending on the choice of $K$‎. ‎Moreover‎, ‎we get unique representations of the elements in terms of basic commutators‎. ‎In particular‎, ‎if $K$ is of characteristic $0$ the subgroup generated by $X$ is freely generated by $X$ as a nilpotent group‎.
topic ‎groups of finite exponent‎
‎relatively free groups‎
‎circle group‎
‎free nilpotent algebra‎
‎algebra group
url http://ijgt.ui.ac.ir/article_22208_1d66e7d97c7526a72c80904843cf42a7.pdf
work_keys_str_mv AT julianehansmann onfreesubgroupsoffiniteexponentincirclegroupsoffreenilpotentalgebras
_version_ 1725998743716626432