Floor Heave Mechanism and Anti-Slide Piles Control Technology in Deep and Large-Span Chamber

Based on plastic limit analysis, the deformation and fracture mechanism of the floor in the large-span chambers of deep mines are discussed and a similarity model test is carried out to verify the reliability of the theoretical analysis. The results show that the local shear failure first appears be...

Full description

Bibliographic Details
Main Authors: Jian Shi, Desen Kong
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/10/4576
Description
Summary:Based on plastic limit analysis, the deformation and fracture mechanism of the floor in the large-span chambers of deep mines are discussed and a similarity model test is carried out to verify the reliability of the theoretical analysis. The results show that the local shear failure first appears below the loading area and develops to the middle part of the test model with the increase in load; when the local shear failure develops to form a continuous sliding surface, continuous plastic flow deformation occurs; the distribution of the plastic zone and the deformation mode obtained from the similarity model test are basically consistent with the Hill-like deformation mode derived from plastic limit analysis. A control technology with anti-slide piles is proposed in order to deal with floor heave in large-span chambers on the basis of previous work. An approach for determining the supporting parameters of anti-slide piles is deduced. To deal with the floor heave in the −1100 level gangue winch room of the Huafeng Coal Mine, a comprehensive reinforcement scheme with anti-slide piles composed of discarded rails and anti-floating anchors is introduced for the floor heave control of the chambers. Site monitoring results show that the scheme not only effectively restrains the development of floor heave, but also ensures the long-term stability of the chamber floor.
ISSN:2076-3417