On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
A graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces &...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/9/793 |
id |
doaj-cd30f97d87db41148ed119f76710f699 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zepeng Li Naoki Matsumoto Enqiang Zhu Jin Xu Tommy Jensen |
spellingShingle |
Zepeng Li Naoki Matsumoto Enqiang Zhu Jin Xu Tommy Jensen On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees Mathematics plane graph unique coloring uniquely three-colorable plane graph construction adjacent (<i>i</i>,<i>j</i>)-faces |
author_facet |
Zepeng Li Naoki Matsumoto Enqiang Zhu Jin Xu Tommy Jensen |
author_sort |
Zepeng Li |
title |
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees |
title_short |
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees |
title_full |
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees |
title_fullStr |
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees |
title_full_unstemmed |
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees |
title_sort |
on uniquely 3-colorable plane graphs without adjacent faces of prescribed degrees |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-09-01 |
description |
A graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of <i>G</i> are <i>adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces</i> if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi></mrow></semantics></math></inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>j</mi></mrow></semantics></math></inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> have a common edge, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the degree of a face <i>f</i>. In this paper, we prove that every uniquely three-colorable plane graph has adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>≤</mo> <mn>5</mn></mrow></semantics></math></inline-formula>. The bound of five for <i>k</i> is the best possible. Furthermore, we prove that there exists a class of uniquely three-colorable plane graphs having neither adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces nor adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </semantics> </math> </inline-formula> are fixed in <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">}</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>≠</mo> <mi>j</mi></mrow></semantics></math></inline-formula>. One of our constructions implies that there exists an infinite family of edge-critical uniquely three-colorable plane graphs with <i>n</i> vertices and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>7</mn> <mn>3</mn> </mfrac> <mi>n</mi> <mo>-</mo> <mfrac> <mn>14</mn> <mn>3</mn> </mfrac> </mrow> </semantics> </math> </inline-formula> edges, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mo>≥</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is odd and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≡</mo> <mn>2</mn> <mspace width="4.44443pt"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mn>3</mn> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. |
topic |
plane graph unique coloring uniquely three-colorable plane graph construction adjacent (<i>i</i>,<i>j</i>)-faces |
url |
https://www.mdpi.com/2227-7390/7/9/793 |
work_keys_str_mv |
AT zepengli onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees AT naokimatsumoto onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees AT enqiangzhu onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees AT jinxu onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees AT tommyjensen onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees |
_version_ |
1724766013320331264 |
spelling |
doaj-cd30f97d87db41148ed119f76710f6992020-11-25T02:44:23ZengMDPI AGMathematics2227-73902019-09-017979310.3390/math7090793math7090793On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed DegreesZepeng Li0Naoki Matsumoto1Enqiang Zhu2Jin Xu3Tommy Jensen4School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, ChinaResearch Institute for Digital Media and Content, Keio University, Tokyo 108-8345, JapanInstitute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, ChinaSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaDepartment of Mathematics, Kyungpook National University, Daegu 41566, KoreaA graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of <i>G</i> are <i>adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces</i> if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi></mrow></semantics></math></inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>j</mi></mrow></semantics></math></inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> have a common edge, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the degree of a face <i>f</i>. In this paper, we prove that every uniquely three-colorable plane graph has adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>≤</mo> <mn>5</mn></mrow></semantics></math></inline-formula>. The bound of five for <i>k</i> is the best possible. Furthermore, we prove that there exists a class of uniquely three-colorable plane graphs having neither adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces nor adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </semantics> </math> </inline-formula> are fixed in <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">}</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>≠</mo> <mi>j</mi></mrow></semantics></math></inline-formula>. One of our constructions implies that there exists an infinite family of edge-critical uniquely three-colorable plane graphs with <i>n</i> vertices and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>7</mn> <mn>3</mn> </mfrac> <mi>n</mi> <mo>-</mo> <mfrac> <mn>14</mn> <mn>3</mn> </mfrac> </mrow> </semantics> </math> </inline-formula> edges, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mo>≥</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is odd and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>≡</mo> <mn>2</mn> <mspace width="4.44443pt"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mn>3</mn> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/7/9/793plane graphunique coloringuniquely three-colorable plane graphconstructionadjacent (<i>i</i>,<i>j</i>)-faces |