On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees

A graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces &...

Full description

Bibliographic Details
Main Authors: Zepeng Li, Naoki Matsumoto, Enqiang Zhu, Jin Xu, Tommy Jensen
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/9/793
id doaj-cd30f97d87db41148ed119f76710f699
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Zepeng Li
Naoki Matsumoto
Enqiang Zhu
Jin Xu
Tommy Jensen
spellingShingle Zepeng Li
Naoki Matsumoto
Enqiang Zhu
Jin Xu
Tommy Jensen
On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
Mathematics
plane graph
unique coloring
uniquely three-colorable plane graph
construction
adjacent (<i>i</i>,<i>j</i>)-faces
author_facet Zepeng Li
Naoki Matsumoto
Enqiang Zhu
Jin Xu
Tommy Jensen
author_sort Zepeng Li
title On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
title_short On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
title_full On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
title_fullStr On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
title_full_unstemmed On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees
title_sort on uniquely 3-colorable plane graphs without adjacent faces of prescribed degrees
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-09-01
description A graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of <i>G</i> are <i>adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces</i> if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi></mrow></semantics></math></inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>j</mi></mrow></semantics></math></inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> have a common edge, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the degree of a face <i>f</i>. In this paper, we prove that every uniquely three-colorable plane graph has adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8804;</mo> <mn>5</mn></mrow></semantics></math></inline-formula>. The bound of five for <i>k</i> is the best possible. Furthermore, we prove that there exists a class of uniquely three-colorable plane graphs having neither adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces nor adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </semantics> </math> </inline-formula> are fixed in <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">}</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>&#8800;</mo> <mi>j</mi></mrow></semantics></math></inline-formula>. One of our constructions implies that there exists an infinite family of edge-critical uniquely three-colorable plane graphs with <i>n</i> vertices and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>7</mn> <mn>3</mn> </mfrac> <mi>n</mi> <mo>-</mo> <mfrac> <mn>14</mn> <mn>3</mn> </mfrac> </mrow> </semantics> </math> </inline-formula> edges, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mo>&#8805;</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is odd and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8801;</mo> <mn>2</mn> <mspace width="4.44443pt"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mn>3</mn> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>.
topic plane graph
unique coloring
uniquely three-colorable plane graph
construction
adjacent (<i>i</i>,<i>j</i>)-faces
url https://www.mdpi.com/2227-7390/7/9/793
work_keys_str_mv AT zepengli onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees
AT naokimatsumoto onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees
AT enqiangzhu onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees
AT jinxu onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees
AT tommyjensen onuniquely3colorableplanegraphswithoutadjacentfacesofprescribeddegrees
_version_ 1724766013320331264
spelling doaj-cd30f97d87db41148ed119f76710f6992020-11-25T02:44:23ZengMDPI AGMathematics2227-73902019-09-017979310.3390/math7090793math7090793On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed DegreesZepeng Li0Naoki Matsumoto1Enqiang Zhu2Jin Xu3Tommy Jensen4School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, ChinaResearch Institute for Digital Media and Content, Keio University, Tokyo 108-8345, JapanInstitute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, ChinaSchool of Electronics Engineering and Computer Science, Peking University, Beijing 100871, ChinaDepartment of Mathematics, Kyungpook National University, Daegu 41566, KoreaA graph <i>G</i> is <i>uniquely k-colorable</i> if the chromatic number of <i>G</i> is <i>k</i> and <i>G</i> has only one <i>k</i>-coloring up to the permutation of the colors. For a plane graph <i>G</i>, two faces <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of <i>G</i> are <i>adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces</i> if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi></mrow></semantics></math></inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>j</mi></mrow></semantics></math></inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>f</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> have a common edge, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the degree of a face <i>f</i>. In this paper, we prove that every uniquely three-colorable plane graph has adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8804;</mo> <mn>5</mn></mrow></semantics></math></inline-formula>. The bound of five for <i>k</i> is the best possible. Furthermore, we prove that there exists a class of uniquely three-colorable plane graphs having neither adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces nor adjacent <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-faces, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </semantics> </math> </inline-formula> are fixed in <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">{</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">}</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>i</mi> <mo>&#8800;</mo> <mi>j</mi></mrow></semantics></math></inline-formula>. One of our constructions implies that there exists an infinite family of edge-critical uniquely three-colorable plane graphs with <i>n</i> vertices and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mn>7</mn> <mn>3</mn> </mfrac> <mi>n</mi> <mo>-</mo> <mfrac> <mn>14</mn> <mn>3</mn> </mfrac> </mrow> </semantics> </math> </inline-formula> edges, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mo>&#8805;</mo> <mn>11</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is odd and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8801;</mo> <mn>2</mn> <mspace width="4.44443pt"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mn>3</mn> <mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/7/9/793plane graphunique coloringuniquely three-colorable plane graphconstructionadjacent (<i>i</i>,<i>j</i>)-faces