Fuel Cell Electrode Characterization Using Neutron Scattering

Electrochemical energy conversion and storage is key for the use of regenerative energies at large scale. A thorough understanding of the individual components, such as the ion conducting membrane and the electrode layers, can be obtained with scattering techniques on atomic to molecular length scal...

Full description

Bibliographic Details
Main Authors: Olaf Holderer, Marcelo Carmo, Meital Shviro, Werner Lehnert, Yohei Noda, Satoshi Koizumi, Marie-Sousai Appavou, Marina Appel, Henrich Frielinghaus
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/6/1474
Description
Summary:Electrochemical energy conversion and storage is key for the use of regenerative energies at large scale. A thorough understanding of the individual components, such as the ion conducting membrane and the electrode layers, can be obtained with scattering techniques on atomic to molecular length scales. The largely heterogeneous electrode layers of High-Temperature Polymer Electrolyte Fuel Cells are studied in this work with small- and wide-angle neutron scattering at the same time with the iMATERIA diffractometer at the spallation neutron source at J-PARC, opening a view on structural properties on atomic to mesoscopic length scales. Recent results on the proton mobility from the same samples measured with backscattering spectroscopy are put into relation with the structural findings.
ISSN:1996-1944