Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in sta...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Chamran University of Ahvaz
2017-07-01
|
Series: | Journal of Hydraulic Structures |
Subjects: | |
Online Access: | http://jhs.scu.ac.ir/article_13281_e5afc5451c649a422dc19fc39abefc65.pdf |
id |
doaj-cd21dab6b51741a8bd1c54fbc9d5c454 |
---|---|
record_format |
Article |
spelling |
doaj-cd21dab6b51741a8bd1c54fbc9d5c4542020-11-25T01:05:17ZengShahid Chamran University of AhvazJournal of Hydraulic Structures2345-413X2345-41562017-07-0131143410.22055/jhs.2017.1328113281Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagationAbdolGhafoor Khademalrasoul0R. Maghsoudi1Department of Civil Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, IranDepartment of Civil Engineering, Esfarayen University of Technology, Esfarayen, North Khorasan, IranIn the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by using Level Set Method (LSM) in coupling with XFEM for 2D mixed mode crack propagation problems. Also, stress intensity factors for mixed mode crack problems are numerically calculated by using interaction integral method completely based on familiar path independent J-integral approach. However, the influence of the first non-singular term (T-stress) of Williams’ stress distribution series in a cracked body is considered. Different crack growth paths are calculated for different domains with predefined notches such as edge and center cracks. In addition, predefined cracks and inclusions are implicitly defined using enrichment procedure in the XFEM framework and the effects of soft or hard inclusions are studied on crack propagation schemes. Finally, estimated crack paths under assumed conditions by using XFEM, are compared with the experimental results.http://jhs.scu.ac.ir/article_13281_e5afc5451c649a422dc19fc39abefc65.pdfExtended Finite Element MethodLevel Set MethodInteraction integralSoft and Hard inclusionsT-stress |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
AbdolGhafoor Khademalrasoul R. Maghsoudi |
spellingShingle |
AbdolGhafoor Khademalrasoul R. Maghsoudi Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation Journal of Hydraulic Structures Extended Finite Element Method Level Set Method Interaction integral Soft and Hard inclusions T-stress |
author_facet |
AbdolGhafoor Khademalrasoul R. Maghsoudi |
author_sort |
AbdolGhafoor Khademalrasoul |
title |
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation |
title_short |
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation |
title_full |
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation |
title_fullStr |
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation |
title_full_unstemmed |
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation |
title_sort |
estimation of fracture path in the structures and the influences of non-singular term on crack propagation |
publisher |
Shahid Chamran University of Ahvaz |
series |
Journal of Hydraulic Structures |
issn |
2345-413X 2345-4156 |
publishDate |
2017-07-01 |
description |
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by using Level Set Method (LSM) in coupling with XFEM for 2D mixed mode crack propagation problems. Also, stress intensity factors for mixed mode crack problems are numerically calculated by using interaction integral method completely based on familiar path independent J-integral approach. However, the influence of the first non-singular term (T-stress) of Williams’ stress distribution series in a cracked body is considered. Different crack growth paths are calculated for different domains with predefined notches such as edge and center cracks. In addition, predefined cracks and inclusions are implicitly defined using enrichment procedure in the XFEM framework and the effects of soft or hard inclusions are studied on crack propagation schemes. Finally, estimated crack paths under assumed conditions by using XFEM, are compared with the experimental results. |
topic |
Extended Finite Element Method Level Set Method Interaction integral Soft and Hard inclusions T-stress |
url |
http://jhs.scu.ac.ir/article_13281_e5afc5451c649a422dc19fc39abefc65.pdf |
work_keys_str_mv |
AT abdolghafoorkhademalrasoul estimationoffracturepathinthestructuresandtheinfluencesofnonsingulartermoncrackpropagation AT rmaghsoudi estimationoffracturepathinthestructuresandtheinfluencesofnonsingulartermoncrackpropagation |
_version_ |
1725195177023242240 |