The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
In the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system: M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7, which satisfies the initia...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Academic Publishing House Researcher
2014-08-01
|
Series: | Evropejskij Issledovatelʹ |
Subjects: | |
Online Access: | http://www.erjournal.ru/journals_n/1409224318.pdf |
id |
doaj-cd0964f06c1e453b8058c4ec3b0af55f |
---|---|
record_format |
Article |
spelling |
doaj-cd0964f06c1e453b8058c4ec3b0af55f2020-11-24T21:07:53ZrusAcademic Publishing House ResearcherEvropejskij Issledovatelʹ2219-82292224-01362014-08-01818-21488149010.13187/er.2014.81.1488The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory Merab Aghniashvili0Diana Mtchedlishvili1Iakob Gogebashvili Telavi State University, GeorgiaIakob Gogebashvili Telavi State University, GeorgiaIn the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system: M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7, which satisfies the initial conditions: 〖∀x∈D: lim〗┬(t→0)〖U(x,t)=φ^((0) ) (x),〗 lim┬(t→0)〖θ(x,t)=φ_7^((0) ) (x), lim┬(t→0) ∂U(x,t)/∂t=φ^((1) ) 〗 (x) and the boundary conditions: 〖∀(x,t)∈S_l:lim┬(D∋x→y∈S)〗〖PU=f, 〗 lim┬(D∋x→y∈S) {θ}_S^±=f_7. The uniqueness theorem of the solution is proved for this problem. http://www.erjournal.ru/journals_n/1409224318.pdfthe main boundary value probleminitial conditionsboundary conditionsthe uniqueness theorem of the solution |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
Merab Aghniashvili Diana Mtchedlishvili |
spellingShingle |
Merab Aghniashvili Diana Mtchedlishvili The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory Evropejskij Issledovatelʹ the main boundary value problem initial conditions boundary conditions the uniqueness theorem of the solution |
author_facet |
Merab Aghniashvili Diana Mtchedlishvili |
author_sort |
Merab Aghniashvili |
title |
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory |
title_short |
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory |
title_full |
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory |
title_fullStr |
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory |
title_full_unstemmed |
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory |
title_sort |
fourth main boundary value problem of dynamics of thermo-resiliency’s momentum theory |
publisher |
Academic Publishing House Researcher |
series |
Evropejskij Issledovatelʹ |
issn |
2219-8229 2224-0136 |
publishDate |
2014-08-01 |
description |
In the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system:
M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7,
which satisfies the initial conditions:
〖∀x∈D: lim〗┬(t→0)〖U(x,t)=φ^((0) ) (x),〗 lim┬(t→0)〖θ(x,t)=φ_7^((0) ) (x), lim┬(t→0) ∂U(x,t)/∂t=φ^((1) ) 〗 (x)
and the boundary conditions:
〖∀(x,t)∈S_l:lim┬(D∋x→y∈S)〗〖PU=f, 〗 lim┬(D∋x→y∈S) {θ}_S^±=f_7.
The uniqueness theorem of the solution is proved for this problem.
|
topic |
the main boundary value problem initial conditions boundary conditions the uniqueness theorem of the solution |
url |
http://www.erjournal.ru/journals_n/1409224318.pdf |
work_keys_str_mv |
AT merabaghniashvili thefourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory AT dianamtchedlishvili thefourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory AT merabaghniashvili fourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory AT dianamtchedlishvili fourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory |
_version_ |
1716761705908797440 |