The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory

In the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system: M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7, which satisfies the initia...

Full description

Bibliographic Details
Main Authors: Merab Aghniashvili, Diana Mtchedlishvili
Format: Article
Language:Russian
Published: Academic Publishing House Researcher 2014-08-01
Series:Evropejskij Issledovatelʹ
Subjects:
Online Access:http://www.erjournal.ru/journals_n/1409224318.pdf
id doaj-cd0964f06c1e453b8058c4ec3b0af55f
record_format Article
spelling doaj-cd0964f06c1e453b8058c4ec3b0af55f2020-11-24T21:07:53ZrusAcademic Publishing House ResearcherEvropejskij Issledovatelʹ2219-82292224-01362014-08-01818-21488149010.13187/er.2014.81.1488The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory Merab Aghniashvili0Diana Mtchedlishvili1Iakob Gogebashvili Telavi State University, GeorgiaIakob Gogebashvili Telavi State University, GeorgiaIn the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system: M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7, which satisfies the initial conditions: 〖∀x∈D: lim〗┬(t→0)⁡〖U(x,t)=φ^((0) ) (x),〗 lim┬(t→0)⁡〖θ(x,t)=φ_7^((0) ) (x), lim┬(t→0) ∂U(x,t)/∂t=φ^((1) ) 〗 (x) and the boundary conditions: 〖∀(x,t)∈S_l:lim┬(D∋x→y∈S)〗⁡〖PU=f, 〗 lim┬(D∋x→y∈S) {θ}_S^±=f_7. The uniqueness theorem of the solution is proved for this problem. http://www.erjournal.ru/journals_n/1409224318.pdfthe main boundary value probleminitial conditionsboundary conditionsthe uniqueness theorem of the solution
collection DOAJ
language Russian
format Article
sources DOAJ
author Merab Aghniashvili
Diana Mtchedlishvili
spellingShingle Merab Aghniashvili
Diana Mtchedlishvili
The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
Evropejskij Issledovatelʹ
the main boundary value problem
initial conditions
boundary conditions
the uniqueness theorem of the solution
author_facet Merab Aghniashvili
Diana Mtchedlishvili
author_sort Merab Aghniashvili
title The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
title_short The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
title_full The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
title_fullStr The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
title_full_unstemmed The Fourth Main Boundary Value Problem of Dynamics of Thermo-resiliency’s Momentum Theory
title_sort fourth main boundary value problem of dynamics of thermo-resiliency’s momentum theory
publisher Academic Publishing House Researcher
series Evropejskij Issledovatelʹ
issn 2219-8229
2224-0136
publishDate 2014-08-01
description In the paper is presented the fourth main boundary value problem of Dynamics of Thermo-resiliency’s Momentum theory. The problem states to find in the cylinder D_l the regular solution of the system: M(∂_x )U-νχθ-χ^0 (∂^2 U)/(∂t^2 )=H, ∆θ-1/ϑ ∂θ/∂t-η ∂/∂t div u=H_7, which satisfies the initial conditions: 〖∀x∈D: lim〗┬(t→0)⁡〖U(x,t)=φ^((0) ) (x),〗 lim┬(t→0)⁡〖θ(x,t)=φ_7^((0) ) (x), lim┬(t→0) ∂U(x,t)/∂t=φ^((1) ) 〗 (x) and the boundary conditions: 〖∀(x,t)∈S_l:lim┬(D∋x→y∈S)〗⁡〖PU=f, 〗 lim┬(D∋x→y∈S) {θ}_S^±=f_7. The uniqueness theorem of the solution is proved for this problem.
topic the main boundary value problem
initial conditions
boundary conditions
the uniqueness theorem of the solution
url http://www.erjournal.ru/journals_n/1409224318.pdf
work_keys_str_mv AT merabaghniashvili thefourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory
AT dianamtchedlishvili thefourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory
AT merabaghniashvili fourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory
AT dianamtchedlishvili fourthmainboundaryvalueproblemofdynamicsofthermoresiliencysmomentumtheory
_version_ 1716761705908797440