Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4
The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE) covering porcine Peyer's patches (PP) has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-08-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fphys.2017.00579/full |
id |
doaj-ccf358ce53c443b19c3fa427f502f60a |
---|---|
record_format |
Article |
spelling |
doaj-ccf358ce53c443b19c3fa427f502f60a2020-11-24T20:57:08ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2017-08-01810.3389/fphys.2017.00579273788Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4Judith Radloff0Evgeny L. Falchuk1Alexander G. Markov2Salah Amasheh3Institute of Veterinary Physiology, Freie Universität BerlinBerlin, GermanyDepartment of General Physiology, Saint Petersburg State UniversitySt. Petersburg, RussiaDepartment of General Physiology, Saint Petersburg State UniversitySt. Petersburg, RussiaInstitute of Veterinary Physiology, Freie Universität BerlinBerlin, GermanyThe pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE) covering porcine Peyer's patches (PP) has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE), employing the Ussing chamber technique. Transepithelial resistance (TER) and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ) proteins (claudin-1, -2, -3, -4, -5, and -8) were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.http://journal.frontiersin.org/article/10.3389/fphys.2017.00579/fullclaudinstissue barriertight junctionpig intestinegut-associated lymphoid tissue |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Judith Radloff Evgeny L. Falchuk Alexander G. Markov Salah Amasheh |
spellingShingle |
Judith Radloff Evgeny L. Falchuk Alexander G. Markov Salah Amasheh Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 Frontiers in Physiology claudins tissue barrier tight junction pig intestine gut-associated lymphoid tissue |
author_facet |
Judith Radloff Evgeny L. Falchuk Alexander G. Markov Salah Amasheh |
author_sort |
Judith Radloff |
title |
Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 |
title_short |
Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 |
title_full |
Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 |
title_fullStr |
Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 |
title_full_unstemmed |
Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4 |
title_sort |
molecular characterization of barrier properties in follicle-associated epithelium of porcine peyer's patches reveals major sealing function of claudin-4 |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Physiology |
issn |
1664-042X |
publishDate |
2017-08-01 |
description |
The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE) covering porcine Peyer's patches (PP) has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE), employing the Ussing chamber technique. Transepithelial resistance (TER) and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ) proteins (claudin-1, -2, -3, -4, -5, and -8) were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology. |
topic |
claudins tissue barrier tight junction pig intestine gut-associated lymphoid tissue |
url |
http://journal.frontiersin.org/article/10.3389/fphys.2017.00579/full |
work_keys_str_mv |
AT judithradloff molecularcharacterizationofbarrierpropertiesinfollicleassociatedepitheliumofporcinepeyerspatchesrevealsmajorsealingfunctionofclaudin4 AT evgenylfalchuk molecularcharacterizationofbarrierpropertiesinfollicleassociatedepitheliumofporcinepeyerspatchesrevealsmajorsealingfunctionofclaudin4 AT alexandergmarkov molecularcharacterizationofbarrierpropertiesinfollicleassociatedepitheliumofporcinepeyerspatchesrevealsmajorsealingfunctionofclaudin4 AT salahamasheh molecularcharacterizationofbarrierpropertiesinfollicleassociatedepitheliumofporcinepeyerspatchesrevealsmajorsealingfunctionofclaudin4 |
_version_ |
1716788770497363968 |