Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)

A novel engineering plastic, poly(decamethylene 2,6-naphthalamide) (PA10N) was prepared via a reaction of 2,6-naphthalene dicarboxylic acid and 1,10-decanediamine. The structure of synthesized PA10N was characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and proton n...

Full description

Bibliographic Details
Format: Article
Language:English
Published: Budapest University of Technology 2010-06-01
Series:eXPRESS Polymer Letters
Subjects:
Online Access:http://www.expresspolymlett.com/letolt.php?file=EPL-0001458&mi=cd
id doaj-cce86fb9aba8448eb1eb2d7bbf6ca44d
record_format Article
spelling doaj-cce86fb9aba8448eb1eb2d7bbf6ca44d2020-11-24T22:26:07ZengBudapest University of Technology eXPRESS Polymer Letters1788-618X2010-06-014634635410.3144/expresspolymlett.2010.44Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)A novel engineering plastic, poly(decamethylene 2,6-naphthalamide) (PA10N) was prepared via a reaction of 2,6-naphthalene dicarboxylic acid and 1,10-decanediamine. The structure of synthesized PA10N was characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The thermal behavior was determined by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Melting temperature (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of PA10N are 320, 144 and 495°C, respectively. The solubility, water-absorbing capacity, and mechanical properties of PA10N have also been investigated. Pyrolysis products and thermal decomposition mechanism of PA10N were analyzed by flash pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results show that the heat resistance and mechanical properties of PA10N are near to those of poly(nonamethylene terephthalamide) (PA9T), and PA10N is a promising heat-resistant and processable engineering plastic. http://www.expresspolymlett.com/letolt.php?file=EPL-0001458&mi=cdMechanical propertiesThermal propertiesPolyamidesSynthesisDecomposition
collection DOAJ
language English
format Article
sources DOAJ
title Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
spellingShingle Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
eXPRESS Polymer Letters
Mechanical properties
Thermal properties
Polyamides
Synthesis
Decomposition
title_short Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
title_full Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
title_fullStr Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
title_full_unstemmed Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
title_sort synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide)
publisher Budapest University of Technology
series eXPRESS Polymer Letters
issn 1788-618X
publishDate 2010-06-01
description A novel engineering plastic, poly(decamethylene 2,6-naphthalamide) (PA10N) was prepared via a reaction of 2,6-naphthalene dicarboxylic acid and 1,10-decanediamine. The structure of synthesized PA10N was characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The thermal behavior was determined by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Melting temperature (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of PA10N are 320, 144 and 495°C, respectively. The solubility, water-absorbing capacity, and mechanical properties of PA10N have also been investigated. Pyrolysis products and thermal decomposition mechanism of PA10N were analyzed by flash pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results show that the heat resistance and mechanical properties of PA10N are near to those of poly(nonamethylene terephthalamide) (PA9T), and PA10N is a promising heat-resistant and processable engineering plastic.
topic Mechanical properties
Thermal properties
Polyamides
Synthesis
Decomposition
url http://www.expresspolymlett.com/letolt.php?file=EPL-0001458&mi=cd
_version_ 1725754573257179136