Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid

Processes involved in the electrodeposition of perrhenate ions were studied from two different potassium nitrate and sodium sulfate background electrolytes in the presence of citric acid on graphite electrode by cyclic voltammetry method. Anodic and cathodic potentials of deposited film were determ...

Full description

Bibliographic Details
Main Authors: Nazerke Zh. Zhumasheva, Leyla K. Kudreeva, Akmerey R. Kalyyeva, Gulzhan L. Badavamova
Format: Article
Language:English
Published: al-Farabi Kazakh National University 2020-03-01
Series:Chemical Bulletin of Kazakh National University
Subjects:
Online Access:https://bulletin.chemistry.kz/index.php/kaznu/article/view/1087
id doaj-cce090292a264e3ba3250afb2e55b863
record_format Article
spelling doaj-cce090292a264e3ba3250afb2e55b8632020-11-25T03:29:22Zengal-Farabi Kazakh National UniversityChemical Bulletin of Kazakh National University1563-03312312-75542020-03-01110.15328/cb1087Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acidNazerke Zh. Zhumasheva0Leyla K. Kudreeva1Akmerey R. Kalyyeva2Gulzhan L. Badavamova3al-Farabi Kazakh National University, Almaty, Kazakhstanal-Farabi Kazakh National University, Almaty, Kazakhstanal-Farabi Kazakh National University, Almaty, Kazakhstanal-Farabi Kazakh National University, Almaty, Kazakhstan Processes involved in the electrodeposition of perrhenate ions were studied from two different potassium nitrate and sodium sulfate background electrolytes in the presence of citric acid on graphite electrode by cyclic voltammetry method. Anodic and cathodic potentials of deposited film were determined. After electrolysis process, morphology and content of obtained deposited layers were investigated by SEM and X-Ray methods. The coated film from sodium sulfate background electrolyte was not uniform and Re content was 60.83-65.5%, in case of potassium nitrate electrolyte, the deposited film was more densely located, and Re content was 80.94-82.52%. In the presence of nickel sulfate and citric acid, an alloy was formed with content of Re 80.94-82.52%, 14.10-11.83% of Ni, 4.96-5.66% of impurities, which were confirmed by X-Ray method. The current density decreased with addition of citric acid into sodium sulfate background electrolyte and in cathodic area, the reduction potential of perrhenate ions remained the same, but oxidation potentials changed from 0.25 to 0.35 V and from 0.5 to 0.6 V. The influence of citric acid on potentials of the processes of reduction and oxidation of perrhenate ions from potassium nitrate gave following results: reduction peaks shifted from -0.35 to -0.55 V, and multi peaks of oxidation appeared which were not noticeable without citric acid. It was shown that citric acid has inhibitory effect on reduction and oxidation of perrhenate ions. It is shown that the electrochemical reduction of perrhenate ions leads to the formation of rhenium dioxide in different forms. https://bulletin.chemistry.kz/index.php/kaznu/article/view/1087perrhenate ionselectrodepositionrheniumcyclic voltammetryelectrolysis
collection DOAJ
language English
format Article
sources DOAJ
author Nazerke Zh. Zhumasheva
Leyla K. Kudreeva
Akmerey R. Kalyyeva
Gulzhan L. Badavamova
spellingShingle Nazerke Zh. Zhumasheva
Leyla K. Kudreeva
Akmerey R. Kalyyeva
Gulzhan L. Badavamova
Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
Chemical Bulletin of Kazakh National University
perrhenate ions
electrodeposition
rhenium
cyclic voltammetry
electrolysis
author_facet Nazerke Zh. Zhumasheva
Leyla K. Kudreeva
Akmerey R. Kalyyeva
Gulzhan L. Badavamova
author_sort Nazerke Zh. Zhumasheva
title Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
title_short Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
title_full Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
title_fullStr Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
title_full_unstemmed Electrodeposition process of perrhenate ions from KNO3 and Na2SO4 background electrolytes in the presence of citric acid
title_sort electrodeposition process of perrhenate ions from kno3 and na2so4 background electrolytes in the presence of citric acid
publisher al-Farabi Kazakh National University
series Chemical Bulletin of Kazakh National University
issn 1563-0331
2312-7554
publishDate 2020-03-01
description Processes involved in the electrodeposition of perrhenate ions were studied from two different potassium nitrate and sodium sulfate background electrolytes in the presence of citric acid on graphite electrode by cyclic voltammetry method. Anodic and cathodic potentials of deposited film were determined. After electrolysis process, morphology and content of obtained deposited layers were investigated by SEM and X-Ray methods. The coated film from sodium sulfate background electrolyte was not uniform and Re content was 60.83-65.5%, in case of potassium nitrate electrolyte, the deposited film was more densely located, and Re content was 80.94-82.52%. In the presence of nickel sulfate and citric acid, an alloy was formed with content of Re 80.94-82.52%, 14.10-11.83% of Ni, 4.96-5.66% of impurities, which were confirmed by X-Ray method. The current density decreased with addition of citric acid into sodium sulfate background electrolyte and in cathodic area, the reduction potential of perrhenate ions remained the same, but oxidation potentials changed from 0.25 to 0.35 V and from 0.5 to 0.6 V. The influence of citric acid on potentials of the processes of reduction and oxidation of perrhenate ions from potassium nitrate gave following results: reduction peaks shifted from -0.35 to -0.55 V, and multi peaks of oxidation appeared which were not noticeable without citric acid. It was shown that citric acid has inhibitory effect on reduction and oxidation of perrhenate ions. It is shown that the electrochemical reduction of perrhenate ions leads to the formation of rhenium dioxide in different forms.
topic perrhenate ions
electrodeposition
rhenium
cyclic voltammetry
electrolysis
url https://bulletin.chemistry.kz/index.php/kaznu/article/view/1087
work_keys_str_mv AT nazerkezhzhumasheva electrodepositionprocessofperrhenateionsfromkno3andna2so4backgroundelectrolytesinthepresenceofcitricacid
AT leylakkudreeva electrodepositionprocessofperrhenateionsfromkno3andna2so4backgroundelectrolytesinthepresenceofcitricacid
AT akmereyrkalyyeva electrodepositionprocessofperrhenateionsfromkno3andna2so4backgroundelectrolytesinthepresenceofcitricacid
AT gulzhanlbadavamova electrodepositionprocessofperrhenateionsfromkno3andna2so4backgroundelectrolytesinthepresenceofcitricacid
_version_ 1724579694781661184