Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.

BACKGROUND AND AIMS:Amphibian intestinal remodeling, where thyroid hormone (T3) induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms,...

Full description

Bibliographic Details
Main Authors: Atsuko Ishizuya-Oka, Mitsuko Kajita, Takashi Hasebe
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4161470?pdf=render
id doaj-ccda24ef90b341bdb4c83ba0104bbd8b
record_format Article
spelling doaj-ccda24ef90b341bdb4c83ba0104bbd8b2020-11-24T22:11:42ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0199e10761110.1371/journal.pone.0107611Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.Atsuko Ishizuya-OkaMitsuko KajitaTakashi HasebeBACKGROUND AND AIMS:Amphibian intestinal remodeling, where thyroid hormone (T3) induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms, we here investigated roles of non-canonical Wnt signaling in the larval-to-adult intestinal remodeling during Xenopus laevis metamorphosis. METHODS/FINDINGS:Our quantitative RT-PCR (qRT-PCR) and immunohistochemical analyses indicated that the expressions of Wnt5a and its receptors, frizzled 2 (Fzd2) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) are up-regulated by T3 and are spatiotemporally correlated with adult epithelial development in the X. laevis intestine. Notably, changes in morphology of larval absorptive epithelial cells expressing Ror2 coincide well with formation of the adult stem cells during metamorphosis. In addition, by using organ cultures of the tadpole intestine, we have experimentally shown that addition of exogenous Wnt5a protein to the culture medium causes morphological changes in the larval epithelium expressing Ror2 even in the absence of T3. In contrast, in the presence of T3 where the adult stem cells are formed in vitro, inhibition of endogenous Wnt5a by an anti-Wnt5a antibody suppressed the epithelial morphological changes, leading to the failure of stem cell formation. SIGNIFICANCE:Our findings strongly suggest that the adult stem cells originate from the larval absorptive cells expressing Ror2, which require Wnt5a/Ror2 signaling for their dedifferentiation accompanied by changes in cell morphology.http://europepmc.org/articles/PMC4161470?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Atsuko Ishizuya-Oka
Mitsuko Kajita
Takashi Hasebe
spellingShingle Atsuko Ishizuya-Oka
Mitsuko Kajita
Takashi Hasebe
Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
PLoS ONE
author_facet Atsuko Ishizuya-Oka
Mitsuko Kajita
Takashi Hasebe
author_sort Atsuko Ishizuya-Oka
title Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
title_short Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
title_full Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
title_fullStr Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
title_full_unstemmed Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.
title_sort thyroid hormone-regulated wnt5a/ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the xenopus laevis intestine.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description BACKGROUND AND AIMS:Amphibian intestinal remodeling, where thyroid hormone (T3) induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms, we here investigated roles of non-canonical Wnt signaling in the larval-to-adult intestinal remodeling during Xenopus laevis metamorphosis. METHODS/FINDINGS:Our quantitative RT-PCR (qRT-PCR) and immunohistochemical analyses indicated that the expressions of Wnt5a and its receptors, frizzled 2 (Fzd2) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) are up-regulated by T3 and are spatiotemporally correlated with adult epithelial development in the X. laevis intestine. Notably, changes in morphology of larval absorptive epithelial cells expressing Ror2 coincide well with formation of the adult stem cells during metamorphosis. In addition, by using organ cultures of the tadpole intestine, we have experimentally shown that addition of exogenous Wnt5a protein to the culture medium causes morphological changes in the larval epithelium expressing Ror2 even in the absence of T3. In contrast, in the presence of T3 where the adult stem cells are formed in vitro, inhibition of endogenous Wnt5a by an anti-Wnt5a antibody suppressed the epithelial morphological changes, leading to the failure of stem cell formation. SIGNIFICANCE:Our findings strongly suggest that the adult stem cells originate from the larval absorptive cells expressing Ror2, which require Wnt5a/Ror2 signaling for their dedifferentiation accompanied by changes in cell morphology.
url http://europepmc.org/articles/PMC4161470?pdf=render
work_keys_str_mv AT atsukoishizuyaoka thyroidhormoneregulatedwnt5aror2signalingisessentialfordedifferentiationoflarvalepithelialcellsintoadultstemcellsinthexenopuslaevisintestine
AT mitsukokajita thyroidhormoneregulatedwnt5aror2signalingisessentialfordedifferentiationoflarvalepithelialcellsintoadultstemcellsinthexenopuslaevisintestine
AT takashihasebe thyroidhormoneregulatedwnt5aror2signalingisessentialfordedifferentiationoflarvalepithelialcellsintoadultstemcellsinthexenopuslaevisintestine
_version_ 1725804560641949696