Face recognition using Angular Radial Transform
Moment-based Angular Radial Transform, Legendre moment invariants and Zernike moments are a family of orthogonal functions which allow the generation of non-redundant descriptors by the projection of an image onto an orthogonal basis. These descriptors can be used for classification, such as in face...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-04-01
|
Series: | Journal of King Saud University: Computer and Information Sciences |
Online Access: | http://www.sciencedirect.com/science/article/pii/S131915781630129X |
id |
doaj-ccbe27d35001419aa787be35cd84575c |
---|---|
record_format |
Article |
spelling |
doaj-ccbe27d35001419aa787be35cd84575c2020-11-24T22:39:35ZengElsevierJournal of King Saud University: Computer and Information Sciences1319-15782018-04-01302141151Face recognition using Angular Radial TransformBensenane Hamdan0Keche Mokhtar1Corresponding author.; Laboratoire Signals and Images, Dept. of Electronique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, 3100 Oran, AlgeriaLaboratoire Signals and Images, Dept. of Electronique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, 3100 Oran, AlgeriaMoment-based Angular Radial Transform, Legendre moment invariants and Zernike moments are a family of orthogonal functions which allow the generation of non-redundant descriptors by the projection of an image onto an orthogonal basis. These descriptors can be used for classification, such as in face recognition. Zernike moments and Legendre moments have already been used for this purpose.This paper proposes to use moment-based Angular Radial Transform for extracting the face characteristics that feed a Support Vector Machine or a Nearest Neighbor Classifier for face recognition. Facial images from the ORL database, Essex Faces94 database, Essex Faces96 database, and Yale database were used for testing the proposed approach. The experimental results obtained show that the proposed method is more efficient, in terms of recognition rate, than the methods based on Zernike and Legendre moments. It is also found that its performance is comparable to that of the best state-of-the-arts methods. Keywords: Angular Radial Transform (ART), Legendre moment invariants (LMI), Euclidean distance (ED), Pseudo-Zernike moments (PZM), Nearest Neighbor Classifier (NNC), Support Vector Machines (SVM)http://www.sciencedirect.com/science/article/pii/S131915781630129X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bensenane Hamdan Keche Mokhtar |
spellingShingle |
Bensenane Hamdan Keche Mokhtar Face recognition using Angular Radial Transform Journal of King Saud University: Computer and Information Sciences |
author_facet |
Bensenane Hamdan Keche Mokhtar |
author_sort |
Bensenane Hamdan |
title |
Face recognition using Angular Radial Transform |
title_short |
Face recognition using Angular Radial Transform |
title_full |
Face recognition using Angular Radial Transform |
title_fullStr |
Face recognition using Angular Radial Transform |
title_full_unstemmed |
Face recognition using Angular Radial Transform |
title_sort |
face recognition using angular radial transform |
publisher |
Elsevier |
series |
Journal of King Saud University: Computer and Information Sciences |
issn |
1319-1578 |
publishDate |
2018-04-01 |
description |
Moment-based Angular Radial Transform, Legendre moment invariants and Zernike moments are a family of orthogonal functions which allow the generation of non-redundant descriptors by the projection of an image onto an orthogonal basis. These descriptors can be used for classification, such as in face recognition. Zernike moments and Legendre moments have already been used for this purpose.This paper proposes to use moment-based Angular Radial Transform for extracting the face characteristics that feed a Support Vector Machine or a Nearest Neighbor Classifier for face recognition. Facial images from the ORL database, Essex Faces94 database, Essex Faces96 database, and Yale database were used for testing the proposed approach. The experimental results obtained show that the proposed method is more efficient, in terms of recognition rate, than the methods based on Zernike and Legendre moments. It is also found that its performance is comparable to that of the best state-of-the-arts methods. Keywords: Angular Radial Transform (ART), Legendre moment invariants (LMI), Euclidean distance (ED), Pseudo-Zernike moments (PZM), Nearest Neighbor Classifier (NNC), Support Vector Machines (SVM) |
url |
http://www.sciencedirect.com/science/article/pii/S131915781630129X |
work_keys_str_mv |
AT bensenanehamdan facerecognitionusingangularradialtransform AT kechemokhtar facerecognitionusingangularradialtransform |
_version_ |
1725708144776052736 |