Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation

Complex networks structures have been extensively used for describing complex natural and technological systems, like the Internet or social networks. More recently, complex network theory has been applied to quantum systems, where complex network topologies may emerge in multiparty quantum states a...

Full description

Bibliographic Details
Main Authors: Francesca Sansavini, Valentina Parigi
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/1/26
id doaj-ccbc29b87d0d4f50aa5c884157acfdab
record_format Article
spelling doaj-ccbc29b87d0d4f50aa5c884157acfdab2020-11-25T01:36:22ZengMDPI AGEntropy1099-43002019-12-012212610.3390/e22010026e22010026Continuous Variables Graph States Shaped as Complex Networks: Optimization and ManipulationFrancesca Sansavini0Valentina Parigi1Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu, F-75252 Paris, FranceLaboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu, F-75252 Paris, FranceComplex networks structures have been extensively used for describing complex natural and technological systems, like the Internet or social networks. More recently, complex network theory has been applied to quantum systems, where complex network topologies may emerge in multiparty quantum states and quantum algorithms have been studied in complex graph structures. In this work, we study multimode Continuous Variables entangled states, named cluster states, where the entanglement structure is arranged in typical real-world complex networks shapes. Cluster states are a resource for measurement-based quantum information protocols, where the quality of a cluster is assessed in terms of the minimal amount of noise it introduces in the computation. We study optimal graph states that can be obtained with experimentally realistic quantum resources, when optimized via analytical procedure. We show that denser and regular graphs allow for better optimization. In the spirit of quantum routing, we also show the reshaping of entanglement connections in small networks via linear optics operations based on numerical optimization.https://www.mdpi.com/1099-4300/22/1/26continuous variables clusterscomplex quantum networksquantum routing
collection DOAJ
language English
format Article
sources DOAJ
author Francesca Sansavini
Valentina Parigi
spellingShingle Francesca Sansavini
Valentina Parigi
Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
Entropy
continuous variables clusters
complex quantum networks
quantum routing
author_facet Francesca Sansavini
Valentina Parigi
author_sort Francesca Sansavini
title Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
title_short Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
title_full Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
title_fullStr Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
title_full_unstemmed Continuous Variables Graph States Shaped as Complex Networks: Optimization and Manipulation
title_sort continuous variables graph states shaped as complex networks: optimization and manipulation
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2019-12-01
description Complex networks structures have been extensively used for describing complex natural and technological systems, like the Internet or social networks. More recently, complex network theory has been applied to quantum systems, where complex network topologies may emerge in multiparty quantum states and quantum algorithms have been studied in complex graph structures. In this work, we study multimode Continuous Variables entangled states, named cluster states, where the entanglement structure is arranged in typical real-world complex networks shapes. Cluster states are a resource for measurement-based quantum information protocols, where the quality of a cluster is assessed in terms of the minimal amount of noise it introduces in the computation. We study optimal graph states that can be obtained with experimentally realistic quantum resources, when optimized via analytical procedure. We show that denser and regular graphs allow for better optimization. In the spirit of quantum routing, we also show the reshaping of entanglement connections in small networks via linear optics operations based on numerical optimization.
topic continuous variables clusters
complex quantum networks
quantum routing
url https://www.mdpi.com/1099-4300/22/1/26
work_keys_str_mv AT francescasansavini continuousvariablesgraphstatesshapedascomplexnetworksoptimizationandmanipulation
AT valentinaparigi continuousvariablesgraphstatesshapedascomplexnetworksoptimizationandmanipulation
_version_ 1725063453938286592