Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
Abstract To understand impact of input and output parameters during optimization and degree of complexity, in the current study we numerically designed a bubble column reactor with a single sparger in the middle of the reactor. After that, some input and output parameters were selected in the post-p...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-01-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-81514-y |
id |
doaj-ccb41b33880f4959af24cb09d3c2adf7 |
---|---|
record_format |
Article |
spelling |
doaj-ccb41b33880f4959af24cb09d3c2adf72021-01-24T12:29:25ZengNature Publishing GroupScientific Reports2045-23222021-01-0111111110.1038/s41598-021-81514-yInfluence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactorsRasool Pelalak0Ali Taghvaie Nakhjiri1Azam Marjani2Mashallah Rezakazemi3Saeed Shirazian4Institute of Research and Development, Duy Tan UniversityDepartment of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad UniversityDepartment for Management of Science and Technology Development, Ton Duc Thang UniversityFaculty of Chemical and Materials Engineering, Shahrood University of TechnologyLaboratory of Computational Modeling of Drugs, South Ural State UniversityAbstract To understand impact of input and output parameters during optimization and degree of complexity, in the current study we numerically designed a bubble column reactor with a single sparger in the middle of the reactor. After that, some input and output parameters were selected in the post-processing of the numerical method, and then the machine learning observation started to investigate the level of complexity and impact of each input on output parameters. The adaptive neuro-fuzzy inference system (ANFIS) method was exploited as a machine learning approach to analyze the gas–liquid flow in the reactor. The ANFIS method was used as a machine learning approach to simulate the flow of a 3D (three-dimensional) bubble column reactor. This model was also used to analyze the influence of input and output parameters together. More specifically, by analyzing the degree of membership functions as a function of each input, the level of complexity of gas fraction was investigated as a function of computing nodes (X, Y, and Z directions). The results showed that a higher number of membership functions results in a better understanding of the process and higher model accuracy and prediction capability. X and Y computing nodes have a similar impact on the gas fraction, while Z computing points (height of reactor) have a uniform distribution of membership function across the column. Four membership functions (MFs) in each input parameter are insufficient to predict the gas fraction in the 3D bubble column reactor. However, by adding two membership functions, all features of gas fraction in the 3D reactor can be captured by the machine learning algorithm. Indeed, the degree of MFs was considered as a function of each input parameter and the effective parameter was found based on the impact of MFs on the output.https://doi.org/10.1038/s41598-021-81514-y |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rasool Pelalak Ali Taghvaie Nakhjiri Azam Marjani Mashallah Rezakazemi Saeed Shirazian |
spellingShingle |
Rasool Pelalak Ali Taghvaie Nakhjiri Azam Marjani Mashallah Rezakazemi Saeed Shirazian Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors Scientific Reports |
author_facet |
Rasool Pelalak Ali Taghvaie Nakhjiri Azam Marjani Mashallah Rezakazemi Saeed Shirazian |
author_sort |
Rasool Pelalak |
title |
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
title_short |
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
title_full |
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
title_fullStr |
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
title_full_unstemmed |
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
title_sort |
influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-01-01 |
description |
Abstract To understand impact of input and output parameters during optimization and degree of complexity, in the current study we numerically designed a bubble column reactor with a single sparger in the middle of the reactor. After that, some input and output parameters were selected in the post-processing of the numerical method, and then the machine learning observation started to investigate the level of complexity and impact of each input on output parameters. The adaptive neuro-fuzzy inference system (ANFIS) method was exploited as a machine learning approach to analyze the gas–liquid flow in the reactor. The ANFIS method was used as a machine learning approach to simulate the flow of a 3D (three-dimensional) bubble column reactor. This model was also used to analyze the influence of input and output parameters together. More specifically, by analyzing the degree of membership functions as a function of each input, the level of complexity of gas fraction was investigated as a function of computing nodes (X, Y, and Z directions). The results showed that a higher number of membership functions results in a better understanding of the process and higher model accuracy and prediction capability. X and Y computing nodes have a similar impact on the gas fraction, while Z computing points (height of reactor) have a uniform distribution of membership function across the column. Four membership functions (MFs) in each input parameter are insufficient to predict the gas fraction in the 3D bubble column reactor. However, by adding two membership functions, all features of gas fraction in the 3D reactor can be captured by the machine learning algorithm. Indeed, the degree of MFs was considered as a function of each input parameter and the effective parameter was found based on the impact of MFs on the output. |
url |
https://doi.org/10.1038/s41598-021-81514-y |
work_keys_str_mv |
AT rasoolpelalak influenceofmachinelearningmembershipfunctionsanddegreeofmembershipfunctiononeachinputparameterforsimulationofreactors AT alitaghvaienakhjiri influenceofmachinelearningmembershipfunctionsanddegreeofmembershipfunctiononeachinputparameterforsimulationofreactors AT azammarjani influenceofmachinelearningmembershipfunctionsanddegreeofmembershipfunctiononeachinputparameterforsimulationofreactors AT mashallahrezakazemi influenceofmachinelearningmembershipfunctionsanddegreeofmembershipfunctiononeachinputparameterforsimulationofreactors AT saeedshirazian influenceofmachinelearningmembershipfunctionsanddegreeofmembershipfunctiononeachinputparameterforsimulationofreactors |
_version_ |
1724325832491532288 |