Laser-dilatometer calibration using a single-crystal silicon sample

Marginal changes in geometrical dimensions due to temperature changes affect the performance of optical instruments. Highly dimensionally stable materials can minimize these effects since they offer low coefficients of thermal expansion (CTE). Our dilatometer, based on heterodyne interferometry, is...

Full description

Bibliographic Details
Main Authors: Ines Hamann, Josep Sanjuan, Ruven Spannagel, Martin Gohlke, Gudrun Wanner, Sönke Schuster, Felipe Guzman, Claus Braxmaier
Format: Article
Language:English
Published: Taylor & Francis Group 2019-01-01
Series:International Journal of Optomechatronics
Subjects:
Online Access:http://dx.doi.org/10.1080/15599612.2019.1587117
id doaj-cca0cdea2f6d4733a6b0f6ed4d2d044a
record_format Article
spelling doaj-cca0cdea2f6d4733a6b0f6ed4d2d044a2020-11-25T00:39:43ZengTaylor & Francis GroupInternational Journal of Optomechatronics1559-96121559-96202019-01-01131182910.1080/15599612.2019.15871171587117Laser-dilatometer calibration using a single-crystal silicon sampleInes Hamann0Josep Sanjuan1Ruven Spannagel2Martin Gohlke3Gudrun Wanner4Sönke Schuster5Felipe Guzman6Claus Braxmaier7University of BremenInstitute of Space Systems (DLR-RY)Institute of Space Systems (DLR-RY)Institute of Space Systems (DLR-RY)Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and Institute for Gravitational Physics of the Leibniz Universität HannoverMax Planck Institute for Gravitational Physics (Albert Einstein Institute) and Institute for Gravitational Physics of the Leibniz Universität HannoverInstitute of Space Systems (DLR-RY)University of BremenMarginal changes in geometrical dimensions due to temperature changes affect the performance of optical instruments. Highly dimensionally stable materials can minimize these effects since they offer low coefficients of thermal expansion (CTE). Our dilatometer, based on heterodyne interferometry, is able to determine the CTE in range. Here, we present the improved interferometer performance using angular measurements via differential wavefront sensing to correct for tilt-to-length coupling. The setup was tested by measuring the CTE of a single-crystal silicon at 285 K. Results are in good agreement with the reported values and show a bias of less than 1%.http://dx.doi.org/10.1080/15599612.2019.1587117dilatometrysilicondifferential wavefront sensingsimulation
collection DOAJ
language English
format Article
sources DOAJ
author Ines Hamann
Josep Sanjuan
Ruven Spannagel
Martin Gohlke
Gudrun Wanner
Sönke Schuster
Felipe Guzman
Claus Braxmaier
spellingShingle Ines Hamann
Josep Sanjuan
Ruven Spannagel
Martin Gohlke
Gudrun Wanner
Sönke Schuster
Felipe Guzman
Claus Braxmaier
Laser-dilatometer calibration using a single-crystal silicon sample
International Journal of Optomechatronics
dilatometry
silicon
differential wavefront sensing
simulation
author_facet Ines Hamann
Josep Sanjuan
Ruven Spannagel
Martin Gohlke
Gudrun Wanner
Sönke Schuster
Felipe Guzman
Claus Braxmaier
author_sort Ines Hamann
title Laser-dilatometer calibration using a single-crystal silicon sample
title_short Laser-dilatometer calibration using a single-crystal silicon sample
title_full Laser-dilatometer calibration using a single-crystal silicon sample
title_fullStr Laser-dilatometer calibration using a single-crystal silicon sample
title_full_unstemmed Laser-dilatometer calibration using a single-crystal silicon sample
title_sort laser-dilatometer calibration using a single-crystal silicon sample
publisher Taylor & Francis Group
series International Journal of Optomechatronics
issn 1559-9612
1559-9620
publishDate 2019-01-01
description Marginal changes in geometrical dimensions due to temperature changes affect the performance of optical instruments. Highly dimensionally stable materials can minimize these effects since they offer low coefficients of thermal expansion (CTE). Our dilatometer, based on heterodyne interferometry, is able to determine the CTE in range. Here, we present the improved interferometer performance using angular measurements via differential wavefront sensing to correct for tilt-to-length coupling. The setup was tested by measuring the CTE of a single-crystal silicon at 285 K. Results are in good agreement with the reported values and show a bias of less than 1%.
topic dilatometry
silicon
differential wavefront sensing
simulation
url http://dx.doi.org/10.1080/15599612.2019.1587117
work_keys_str_mv AT ineshamann laserdilatometercalibrationusingasinglecrystalsiliconsample
AT josepsanjuan laserdilatometercalibrationusingasinglecrystalsiliconsample
AT ruvenspannagel laserdilatometercalibrationusingasinglecrystalsiliconsample
AT martingohlke laserdilatometercalibrationusingasinglecrystalsiliconsample
AT gudrunwanner laserdilatometercalibrationusingasinglecrystalsiliconsample
AT sonkeschuster laserdilatometercalibrationusingasinglecrystalsiliconsample
AT felipeguzman laserdilatometercalibrationusingasinglecrystalsiliconsample
AT clausbraxmaier laserdilatometercalibrationusingasinglecrystalsiliconsample
_version_ 1725292777960374272