Safety assessment of the process ‘Krones’ used to recycle post‐consumer PET into food contact materials

Abstract This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the recycling process Krones pellet (EU register number RECYC0149). The input to the process is washed and dried poly(ethylene terephthalate) (PE...

Full description

Bibliographic Details
Main Authors: EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF), Vittorio Silano, Claudia Bolognesi, Laurence Castle, Kevin Chipman, Jean‐Pierre Cravedi, Karl‐Heinz Engel, Paul Fowler, Roland Franz, Konrad Grob, Rainer Gürtler, Trine Husøy, Sirpa Kärenlampi, Wim Mennes, Karla Pfaff, Gilles Riviere, Jannavi Srinivasan, Maria de Fátima Tavares Poças, Christina Tlustos, Detlef Wölfle, Holger Zorn, Vincent Dudler, Nathalie Gontard, Eugenia Lampi, Cristina Nerin, Constantine Papaspyrides, Cristina Croera, Maria Rosaria Milana
Format: Article
Language:English
Published: Wiley 2017-10-01
Series:EFSA Journal
Subjects:
Online Access:https://doi.org/10.2903/j.efsa.2017.5015
Description
Summary:Abstract This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the recycling process Krones pellet (EU register number RECYC0149). The input to the process is washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post‐consumer PET containers and containing no more than 5% PET from non‐food consumer applications. In this technology, washed and dried PET flakes are extruded to pellets that are then crystallised and decontaminated in a reactor at high temperature under vacuum. Having examined the results of the challenge test provided, the Panel concluded that two steps, the extrusion (step 2) and the decontamination in the vacuum reactor (step 4), are the critical steps that determine the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, residence time and, for the vacuum reactor, also pressure. Under these conditions, it was demonstrated that the recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 μg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process when used up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs for long‐term storage at room temperature, with or without hotfill, is not considered of safety concern. Trays made of this recycled PET should not be used in microwave and conventional ovens.
ISSN:1831-4732