Summary: | BackgroundThe World Health Organization has declared the novel coronavirus disease (COVID-19) to be a public health emergency; at present, India is facing a major threat of community spread. We developed a mathematical model for investigating and predicting the effects of lockdown on future COVID-19 cases with a specific focus on India.
ObjectiveThe objective of this work was to develop and validate a mathematical model and to assess the impact of various lockdown scenarios on COVID-19 transmission in India.
MethodsA model consisting of a framework of ordinary differential equations was developed by incorporating the actual reported cases in 14 countries. After validation, the model was applied to predict COVID-19 transmission in India for different intervention scenarios in terms of lockdown for 4, 14, 21, 42, and 60 days. We also assessed the situations of enhanced exposure due to aggregation of individuals in transit stations and shopping malls before the lockdown.
ResultsThe developed model is efficient in predicting the number of COVID-19 cases compared to the actual reported cases in 14 countries. For India, the model predicted marked reductions in cases for the intervention periods of 14 and 21 days of lockdown and significant reduction for 42 days of lockdown. Such intervention exceeding 42 days does not result in measurable improvement. Finally, for the scenario of “panic shopping” or situations where there is a sudden increase in the factors leading to higher exposure to infection, the model predicted an exponential transmission, resulting in failure of the considered intervention strategy.
ConclusionsImplementation of a strict lockdown for a period of at least 21 days is expected to reduce the transmission of COVID-19. However, a further extension of up to 42 days is required to significantly reduce the transmission of COVID-19 in India. Any relaxation in the lockdown may lead to exponential transmission, resulting in a heavy burden on the health care system in the country.
|