TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR

Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network...

Full description

Bibliographic Details
Main Authors: Zilu Ying, Chen Xuan, Yikui Zhai, Bing Sun, Jingwen Li, Wenbo Deng, Chaoyun Mai, Faguan Wang, Ruggero Donida Labati, Vincenzo Piuri, Fabio Scotti
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/6/1724
Description
Summary:Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network (CNN) model incorporating transfer learning is proposed for better handling SAR targets recognition tasks. In this work, firstly we propose the Atrous-Inception module, which combines both atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling the parameter amount and realizing lightweight network architecture. Secondly, the transfer learning strategy is used to effectively transfer the prior knowledge of the optical, non-optical, hybrid optical and non-optical domains to the SAR target recognition tasks, thereby improving the model’s recognition performance on small sample SAR target datasets. Finally, the model constructed in this paper is verified to be 97.97% on ten types of MSTAR datasets under standard operating conditions, reaching a mainstream target recognition rate. Meanwhile, the method presented in this paper shows strong robustness and generalization performance on a small number of randomly sampled SAR target datasets.
ISSN:1424-8220