An Improved Grey Wolf Optimization Algorithm with Variable Weights

With a hypothesis that the social hierarchy of the grey wolves would be also followed in their searching positions, an improved grey wolf optimization (GWO) algorithm with variable weights (VW-GWO) is proposed. And to reduce the probability of being trapped in local optima, a new governing equation...

Full description

Bibliographic Details
Main Authors: Zheng-Ming Gao, Juan Zhao
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2019/2981282
Description
Summary:With a hypothesis that the social hierarchy of the grey wolves would be also followed in their searching positions, an improved grey wolf optimization (GWO) algorithm with variable weights (VW-GWO) is proposed. And to reduce the probability of being trapped in local optima, a new governing equation of the controlling parameter is also proposed. Simulation experiments are carried out, and comparisons are made. Results show that the proposed VW-GWO algorithm works better than the standard GWO, the ant lion optimization (ALO), the particle swarm optimization (PSO) algorithm, and the bat algorithm (BA). The novel VW-GWO algorithm is also verified in high-dimensional problems.
ISSN:1687-5265
1687-5273