Tribological Assessment of Aluminum Cylinder Material for Piston Compressors in Trucks and Buses Brake Systems

Applying new technologies to reduce friction and wear in vehicles and equipment can minimize mechanical losses. This reduces power loss in internal combustion engines and reduces fuel consumption and emissions. Consumption of fuel energy can be reduced by the use of light metals, for example aluminu...

Full description

Bibliographic Details
Main Authors: Saša Milojević*, Dragan Džunić, Dejan Marić*, Tomáš Skrúcaný, Slobodan Mitrović, Radivoje Pešić
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2021-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/379494
Description
Summary:Applying new technologies to reduce friction and wear in vehicles and equipment can minimize mechanical losses. This reduces power loss in internal combustion engines and reduces fuel consumption and emissions. Consumption of fuel energy can be reduced by the use of light metals, for example aluminum alloy, to produce vehicles and their aggregates and parts. In this case, the problem is poor tribological properties of those light weight metals, as well as the lower strength compared to the cast iron construction. For tribology research purposes, the contact surface of the aluminum cylinder of an experimental piston air compressor is reinforced with inserts of cast iron. The results of tribology research of the composite material are presented in the paper, explaining how parameters such as the sliding speed, contact time and contact area influence friction and wear of the material in relative tribological contacts, under constant normal force. The test procedures were performed on the ball-on-plate CSM® nanotribometer, in linear reciprocating sliding conditions with no lubricant. Material composition of the samples was determined using the Energy-Dispersive Spectroscopy. All measurements were realized at the Faculty of Engineering, University of Kragujevac.
ISSN:1330-3651
1848-6339