Information-Theoretic Inference of Common Ancestors

A directed acyclic graph (DAG) partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents...

Full description

Bibliographic Details
Main Authors: Bastian Steudel, Nihat Ay
Format: Article
Language:English
Published: MDPI AG 2015-04-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/4/2304
Description
Summary:A directed acyclic graph (DAG) partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents a given set of conditional independence relations. We are interested in properties of this class that can be derived from observations of a subsystem only. To this end, we prove an information-theoretic inequality that allows for the inference of common ancestors of observed parts in any DAG representing some unknown larger system. More explicitly, we show that a large amount of dependence in terms of mutual information among the observations implies the existence of a common ancestor that distributes this information. Within the causal interpretation of DAGs, our result can be seen as a quantitative extension of Reichenbach’s principle of common cause to more than two variables. Our conclusions are valid also for non-probabilistic observations, such as binary strings, since we state the proof for an axiomatized notion of “mutual information” that includes the stochastic as well as the algorithmic version.
ISSN:1099-4300