Instability of traveling waves for a generalized diffusion model in population problems

In this paper, we study the instability of the traveling waves of a generalized diffusion model in population problems. We prove that some traveling wave solutions are nonlinear unstable under $H^2$ perturbations. These traveling wave solutions converge to a constant as $x\to\infty$.

Bibliographic Details
Main Author: Changchun Liu
Format: Article
Language:English
Published: University of Szeged 2004-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=208
id doaj-cc4b5ff939474d11bd30ed9d54a35e02
record_format Article
spelling doaj-cc4b5ff939474d11bd30ed9d54a35e022021-07-14T07:21:18ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752004-12-0120041811010.14232/ejqtde.2004.1.18208Instability of traveling waves for a generalized diffusion model in population problemsChangchun Liu0Jilin University, Changchun, P. R. ChinaIn this paper, we study the instability of the traveling waves of a generalized diffusion model in population problems. We prove that some traveling wave solutions are nonlinear unstable under $H^2$ perturbations. These traveling wave solutions converge to a constant as $x\to\infty$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=208
collection DOAJ
language English
format Article
sources DOAJ
author Changchun Liu
spellingShingle Changchun Liu
Instability of traveling waves for a generalized diffusion model in population problems
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Changchun Liu
author_sort Changchun Liu
title Instability of traveling waves for a generalized diffusion model in population problems
title_short Instability of traveling waves for a generalized diffusion model in population problems
title_full Instability of traveling waves for a generalized diffusion model in population problems
title_fullStr Instability of traveling waves for a generalized diffusion model in population problems
title_full_unstemmed Instability of traveling waves for a generalized diffusion model in population problems
title_sort instability of traveling waves for a generalized diffusion model in population problems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2004-12-01
description In this paper, we study the instability of the traveling waves of a generalized diffusion model in population problems. We prove that some traveling wave solutions are nonlinear unstable under $H^2$ perturbations. These traveling wave solutions converge to a constant as $x\to\infty$.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=208
work_keys_str_mv AT changchunliu instabilityoftravelingwavesforageneralizeddiffusionmodelinpopulationproblems
_version_ 1721303975634927616