Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)

Cotton used as herba lraw material of textile industry is of strategic importance in our country and also in agriculture, industry and trade in the world. Cotton trade between countries takes place through cotton stock exchanges. The state determines the value of many agricultural products in our co...

Full description

Bibliographic Details
Main Author: Mustafa
Format: Article
Language:deu
Published: Celal Bayar University 2018-12-01
Series:Yönetim ve Ekonomi
Subjects:
Online Access:http://dergipark.gov.tr/yonveek/issue/41680/457761
id doaj-cc4b39aa12334d90a29f1d01311ce594
record_format Article
spelling doaj-cc4b39aa12334d90a29f1d01311ce5942020-11-25T00:34:18ZdeuCelal Bayar UniversityYönetim ve Ekonomi1302-00641302-00642018-12-0125310171031Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)Mustafa0GERŞİLCotton used as herba lraw material of textile industry is of strategic importance in our country and also in agriculture, industry and trade in the world. Cotton trade between countries takes place through cotton stock exchanges. The state determines the value of many agricultural products in our country. However, cotton is one of the few products whose prices are determined by the stock exchange. In this study, annual cotton prices were taken from Manisa Agricultural Market. Later, these data was first corrected, and analyzed in the weka program. Time series and artificial neural network techniques were used to estimate the value of pricesfor 2017. Based on the estimated valuesby MAE, MAPE and RMSE, it is decided which technique will yield better prediction performance. The results obtained were also compared with similar studies in the literature. All of these results show that the artificial neural network technique achieved more successful results.http://dergipark.gov.tr/yonveek/issue/41680/457761Data MiningTime SeriesArtificialNeural NetworkComparingForecastPerformance
collection DOAJ
language deu
format Article
sources DOAJ
author Mustafa
spellingShingle Mustafa
Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
Yönetim ve Ekonomi
Data Mining
Time Series
ArtificialNeural Network
ComparingForecastPerformance
author_facet Mustafa
author_sort Mustafa
title Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
title_short Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
title_full Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
title_fullStr Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
title_full_unstemmed Manisa Pamuk Fiyatlarının Zaman Serisi Analizi Ve Yapay Sinir Ağı Teknikleri İle Tahminlenmesi Ve Tahmin Performanslarının Karşılaştırılması(Estimating Of Manisa Cotton Prices Using Time Series And Artificial Neural Network Techniques And Comparison Of Their Estimating Performance)
title_sort manisa pamuk fiyatlarının zaman serisi analizi ve yapay sinir ağı teknikleri i̇le tahminlenmesi ve tahmin performanslarının karşılaştırılması(estimating of manisa cotton prices using time series and artificial neural network techniques and comparison of their estimating performance)
publisher Celal Bayar University
series Yönetim ve Ekonomi
issn 1302-0064
1302-0064
publishDate 2018-12-01
description Cotton used as herba lraw material of textile industry is of strategic importance in our country and also in agriculture, industry and trade in the world. Cotton trade between countries takes place through cotton stock exchanges. The state determines the value of many agricultural products in our country. However, cotton is one of the few products whose prices are determined by the stock exchange. In this study, annual cotton prices were taken from Manisa Agricultural Market. Later, these data was first corrected, and analyzed in the weka program. Time series and artificial neural network techniques were used to estimate the value of pricesfor 2017. Based on the estimated valuesby MAE, MAPE and RMSE, it is decided which technique will yield better prediction performance. The results obtained were also compared with similar studies in the literature. All of these results show that the artificial neural network technique achieved more successful results.
topic Data Mining
Time Series
ArtificialNeural Network
ComparingForecastPerformance
url http://dergipark.gov.tr/yonveek/issue/41680/457761
work_keys_str_mv AT mustafa manisapamukfiyatlarınınzamanserisianaliziveyapaysiniragıteknikleriiletahminlenmesivetahminperformanslarınınkarsılastırılmasıestimatingofmanisacottonpricesusingtimeseriesandartificialneuralnetworktechniquesandcomparisonoftheirestimatingperformance
_version_ 1725314251024760832