Numerical Investigation on Cavitation Suppression of Microchannel over a NACA0012 Hydrofoil

To find a better method to suppress cavitation, a microchannel design connecting the internal low-pressure area with the outside is proposed for the first time in this paper; the method was adopted to replenish fluid in the interior of the low-pressure area to inhibit cavitation. Through numerical s...

Full description

Bibliographic Details
Main Authors: Zhouhao Shi, Zhanshan Xie, Weidong Shi, Qinghong Zhang, Lingwei Tan
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6641839
Description
Summary:To find a better method to suppress cavitation, a microchannel design connecting the internal low-pressure area with the outside is proposed for the first time in this paper; the method was adopted to replenish fluid in the interior of the low-pressure area to inhibit cavitation. Through numerical simulation, it is found that the size and position of microchannel have a certain influence on the cavitation inhibition. The results show that the generation and development of cavitation, under the same working conditions, can be effectively restrained by adopting appropriate microchannel (x = 0.05 c, d = 6 cm). Compared with the original hydrofoil, the scale of cavitation is reduced by nearly 50%, and its turbulent kinetic energy remains unchanged. Therefore, it is considered that microchannel technology, as a new means of cavitation suppression, is of great significance to other types of fluid machinery.
ISSN:1875-9203