Summary: | Background/purpose: PDLSCs (periodontal ligament stem cells), derived from dental tissues, are candidate cells for regeneration of dental tissues. MiRNAs could regulate osteogenic differentiation and the transformation into osteoblasts. This study was conducted to figure out how miR-184 regulates osteoblastic differentiation in PDLSCs. Materials and methods: PDLSCs were isolated from premolars, and the osteoblastic differentiation was validated via Alizarin red staining and determination of ALP (alkaline phosphatase) activity. Expression of osteogenic specific genes were evaluated by western blot, and the expression pattern of miR-184 was determined by qRT-PCR. Target gene of miR-184 was then verified by dual luciferase reporter assay. Results: Osteogenic-induced PDLSCs were successfully established with increased mineral deposition, ALP activity and protein expression of RUNX2 (runt-related transcription factor 2), osterix and BSP (bone sialoprotein). MiR-184 was reduced during osteoblastic differentiation of PDLSCs, and over-expression of miR-184 suppressed osteoblastic differentiation, as evidenced by reduction in mineral deposition, ALP activity and protein expression of RUNX2, osterix and BSP. MiR-184 could target NFI-C (nuclear factor I-C), and inhibit NFI-C expression in PDLSCs. NFI-C was enhanced during osteoblastic differentiation of PDLSCs, suggesting negative correlation with miR-184. Forced NFI-C expression promoted osteoblastic differentiation, and counteracted with the suppressive effects of miR-184 on osteoblastic differentiation. Conclusion: Downregulation of miR-184 facilitates osteoblastic differentiation in PDLSCs by modulating NFI-C, providing novel therapeutic strategy for regeneration of dental tissues.
|