Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0]
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its appli...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
F1000 Research Ltd
2013-09-01
|
Series: | F1000Research |
Subjects: | |
Online Access: | http://f1000research.com/articles/2-188/v1 |
id |
doaj-cbe4b6a780b84292b580bd5752105e05 |
---|---|
record_format |
Article |
spelling |
doaj-cbe4b6a780b84292b580bd5752105e052020-11-25T03:35:34ZengF1000 Research LtdF1000Research2046-14022013-09-01210.12688/f1000research.2-188.v12196Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0]Liliana Florea0Li Song1Steven L Salzberg2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USADepartment of Computer Science, Johns Hopkins University, Baltimore, MD, 21205, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USAAlternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina’s Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed (‘switched’) between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository (http://zenodo.org/record/7068; doi:10.5281/zenodo.7068) and from our web site http://ccb.jhu.edu/software/ASprofile.http://f1000research.com/articles/2-188/v1BioinformaticsControl of Gene Expression |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Liliana Florea Li Song Steven L Salzberg |
spellingShingle |
Liliana Florea Li Song Steven L Salzberg Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] F1000Research Bioinformatics Control of Gene Expression |
author_facet |
Liliana Florea Li Song Steven L Salzberg |
author_sort |
Liliana Florea |
title |
Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
title_short |
Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
title_full |
Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
title_fullStr |
Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
title_full_unstemmed |
Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
title_sort |
thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v1; ref status: indexed, http://f1000r.es/1p0] |
publisher |
F1000 Research Ltd |
series |
F1000Research |
issn |
2046-1402 |
publishDate |
2013-09-01 |
description |
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina’s Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed (‘switched’) between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository (http://zenodo.org/record/7068; doi:10.5281/zenodo.7068) and from our web site http://ccb.jhu.edu/software/ASprofile. |
topic |
Bioinformatics Control of Gene Expression |
url |
http://f1000research.com/articles/2-188/v1 |
work_keys_str_mv |
AT lilianaflorea thousandsofexonskippingeventsdifferentiateamongsplicingpatternsinsixteenhumantissuesv1refstatusindexedhttpf1000res1p0 AT lisong thousandsofexonskippingeventsdifferentiateamongsplicingpatternsinsixteenhumantissuesv1refstatusindexedhttpf1000res1p0 AT stevenlsalzberg thousandsofexonskippingeventsdifferentiateamongsplicingpatternsinsixteenhumantissuesv1refstatusindexedhttpf1000res1p0 |
_version_ |
1724553665743683584 |