Effectiveness of Core-Shell Nanofibers Incorporating Amphotericin B by Solution Blow Spinning Against Leishmania and Candida Species

The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against Leishmania and Candida species. The core-shell...

Full description

Bibliographic Details
Main Authors: Ingrid Morgana Fernandes Gonçalves, Ítalo Martins Rocha, Emanuene Galdino Pires, Isis de Araújo Ferreira Muniz, Panmella Pereira Maciel, Jefferson Muniz de Lima, Iêda Maria Garcia dos Santos, Roberta Bonan Dantas Batista, Eudes Leonnan Gomes de Medeiros, Eliton Souto de Medeiros, Juliano Elvis de Oliveira, Luiz Ricardo Goulart, Paulo Rogério Ferreti Bonan, Lúcio Roberto Cançado Castellano
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-10-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2020.571821/full
Description
Summary:The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against Leishmania and Candida species. The core-shell nanofibers incorporated with AmpB were synthesized by Solution Blow Spinning (SBS) and characterized by scanning electron microscopy (SEM), differential scanning calorimetry, X-Ray diffraction, and drug release assay. In vitro leishmanicidal and antifungal activity were also evaluated. Fibrous membranes with uniform morphology and smooth surfaces were produced. The intensity of the diffraction peaks becomes slightly more pronounced, assuming the increased crystallization in PLA/PEG at high AmpB loadings. Drug release occurred and the solutions with nanofibers to encourage greater incorporation of AmpB showed a higher concentration. In the results of the experiment with promastigotes, the wells treated with nanofibers containing concentrations of AmpB at 0.25, 0.5, and 1%, did not have any viable cells, similar to the positive control. Various concentrations of AmpB improved the inhibition of fungal growth. The delivery system based on PLA/PEG nanofibers was properly developed for AmpB, presenting a controlled release and a successful encapsulation, as well as antifungal and antileishmanial activity.
ISSN:2296-4185