On the <i>Z<sub>n</sub></i> sign pattern matrices
Let <i>Z<sub>n</sub></i> dente the set of all square sign pattern matrices of order <i>n</i> whose off-diagonal entries are non-positive.For a sign pattern matrix <i>A</i>∈<i>Z<sub>n</sub></i> and two arbitrary real matrices <...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Academic Journals Center of Shanghai Normal University
2013-12-01
|
Series: | Journal of Shanghai Normal University (Natural Sciences) |
Subjects: | |
Online Access: | http://qktg.shnu.edu.cn/zrb/shsfqkszrb/ch/reader/create_pdf.aspx?file_no=201306003&year_id=2013&quarter_id=6&falg=1 |
id |
doaj-cbc7ce2111444dbcadf3c8cabb6c5f25 |
---|---|
record_format |
Article |
spelling |
doaj-cbc7ce2111444dbcadf3c8cabb6c5f252020-11-24T20:59:35ZengAcademic Journals Center of Shanghai Normal UniversityJournal of Shanghai Normal University (Natural Sciences)1000-51371000-51372013-12-01426580583201306003On the <i>Z<sub>n</sub></i> sign pattern matricesFANG Maozhong0ZHANG Jizhou1School of Mathematics and Information,Shanghai Lixin University of CommerceCollege of Mathematics and Sciences,Shanghai Normal UniversityLet <i>Z<sub>n</sub></i> dente the set of all square sign pattern matrices of order <i>n</i> whose off-diagonal entries are non-positive.For a sign pattern matrix <i>A</i>∈<i>Z<sub>n</sub></i> and two arbitrary real matrices <i>B</i><sub>1</sub>,<i>B</i><sub>2</sub> with sign pattern <i>A</i>,if sgn(<i>B</i><sub>1</sub><i>B</i><sub>2</sub>)∈<i>Z<sub>n</sub></i>,then we call this property the closure property of <i>Z<sub>n</sub></i>.We prove that if <i>A</i>∈<i>Z<sub>n</sub></i>(<i>n</i>≥3) and <i>A</i> has the closure property of <i>Z<sub>n</sub></i>,then <i>A</i> must be reducible.We also characterize this kind of <i>Z<sub>n</sub></i> sign pattern matrices.http://qktg.shnu.edu.cn/zrb/shsfqkszrb/ch/reader/create_pdf.aspx?file_no=201306003&year_id=2013&quarter_id=6&falg=1sign pattern matrixclosurereducible |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
FANG Maozhong ZHANG Jizhou |
spellingShingle |
FANG Maozhong ZHANG Jizhou On the <i>Z<sub>n</sub></i> sign pattern matrices Journal of Shanghai Normal University (Natural Sciences) sign pattern matrix closure reducible |
author_facet |
FANG Maozhong ZHANG Jizhou |
author_sort |
FANG Maozhong |
title |
On the <i>Z<sub>n</sub></i> sign pattern matrices |
title_short |
On the <i>Z<sub>n</sub></i> sign pattern matrices |
title_full |
On the <i>Z<sub>n</sub></i> sign pattern matrices |
title_fullStr |
On the <i>Z<sub>n</sub></i> sign pattern matrices |
title_full_unstemmed |
On the <i>Z<sub>n</sub></i> sign pattern matrices |
title_sort |
on the <i>z<sub>n</sub></i> sign pattern matrices |
publisher |
Academic Journals Center of Shanghai Normal University |
series |
Journal of Shanghai Normal University (Natural Sciences) |
issn |
1000-5137 1000-5137 |
publishDate |
2013-12-01 |
description |
Let <i>Z<sub>n</sub></i> dente the set of all square sign pattern matrices of order <i>n</i> whose off-diagonal entries are non-positive.For a sign pattern matrix <i>A</i>∈<i>Z<sub>n</sub></i> and two arbitrary real matrices <i>B</i><sub>1</sub>,<i>B</i><sub>2</sub> with sign pattern <i>A</i>,if sgn(<i>B</i><sub>1</sub><i>B</i><sub>2</sub>)∈<i>Z<sub>n</sub></i>,then we call this property the closure property of <i>Z<sub>n</sub></i>.We prove that if <i>A</i>∈<i>Z<sub>n</sub></i>(<i>n</i>≥3) and <i>A</i> has the closure property of <i>Z<sub>n</sub></i>,then <i>A</i> must be reducible.We also characterize this kind of <i>Z<sub>n</sub></i> sign pattern matrices. |
topic |
sign pattern matrix closure reducible |
url |
http://qktg.shnu.edu.cn/zrb/shsfqkszrb/ch/reader/create_pdf.aspx?file_no=201306003&year_id=2013&quarter_id=6&falg=1 |
work_keys_str_mv |
AT fangmaozhong ontheizsubnsubisignpatternmatrices AT zhangjizhou ontheizsubnsubisignpatternmatrices |
_version_ |
1716782280339357696 |