Cluster observations in the magnetosheath – Part 2: Intensity of the turbulence at electron scales

The Cluster STAFF Spectral Analyser measures the magnetic and electric power spectral densities (PSD) &delta;<i>B</i><sup>2</sup> and &delta;<i>E</i><sup>2</sup> in the magnetosheath between 8 Hz and 4 kHz, i.e. between about the lower hybrid...

Full description

Bibliographic Details
Main Authors: C. Lacombe, A. A. Samsonov, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, C. C. Harvey, J.-M. Bosqued, P. Trávníček
Format: Article
Language:English
Published: Copernicus Publications 2006-12-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/24/3523/2006/angeo-24-3523-2006.pdf
id doaj-cbb48908c7554fa4bd5c7bfaf320c27c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Lacombe
A. A. Samsonov
A. Mangeney
M. Maksimovic
N. Cornilleau-Wehrlin
C. C. Harvey
J.-M. Bosqued
P. Trávníček
spellingShingle C. Lacombe
A. A. Samsonov
A. Mangeney
M. Maksimovic
N. Cornilleau-Wehrlin
C. C. Harvey
J.-M. Bosqued
P. Trávníček
Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
Annales Geophysicae
author_facet C. Lacombe
A. A. Samsonov
A. Mangeney
M. Maksimovic
N. Cornilleau-Wehrlin
C. C. Harvey
J.-M. Bosqued
P. Trávníček
author_sort C. Lacombe
title Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
title_short Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
title_full Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
title_fullStr Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
title_full_unstemmed Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scales
title_sort cluster observations in the magnetosheath &ndash; part 2: intensity of the turbulence at electron scales
publisher Copernicus Publications
series Annales Geophysicae
issn 0992-7689
1432-0576
publishDate 2006-12-01
description The Cluster STAFF Spectral Analyser measures the magnetic and electric power spectral densities (PSD) &delta;<i>B</i><sup>2</sup> and &delta;<i>E</i><sup>2</sup> in the magnetosheath between 8 Hz and 4 kHz, i.e. between about the lower hybrid frequency and 10 times the proton plasma frequency. We study about 23 h of data on four different days. We do not consider the whistler waves and the electrostatic pulses (which are not always observed) but the underlying permanent fluctuations. Paper 1 (Mangeney et al., 2006) shows why the permanent PSD at a given frequency <i>f</i> depends strongly on the angle &Theta;<i><sub>BV</sub></i> between the magnetic field <i><b>B</b></i> and the flow velocity <i><b>V</b></i>: this is observed for the electromagnetic (e.m.) fluctuations, &delta;<i>B</i><sup>2</sup> and &delta;<i>E<sub>em</sub></i><sup>2</sup>, below the electron cyclotron frequency <i>f<sub>ce</sub></i>, and for the electrostatic (e.s.) fluctuations &delta;<i>E<sub>es</sub></i><sup>2</sup> at and above <i>f<sub>ce</sub></i>. This dependence is due to the Doppler shift of fluctuations which have a highly anisotropic distribution of the intensity of the wave vector <i><b>k</b></i> spectrum, and have a power law intensity &#x221D;<i>k</i><sup>&minus;&nu;</sup> with &nu;&#x2243;3 to 4. In the present paper, we look for parameters, other than &Theta;<sub><i>BV</i></sub>, which control the intensity of the fluctuations. At <i>f</i>&#x2243;10 Hz, &delta;<i>B</i><sup>2</sup> and &delta;<i>E</i><sup>2</sup><sub><i>em</i></sub> increase when the solar wind dynamic pressure <i>P<sub>DYN</sub><sup>SW</sup></i> increases. When <i>P<sub>DYN</sub><sup>SW</sup> </i>increases, the magnetosheath <i>P<sub>DYN</sub><sup>MS</sup></i>&#x221D;<i>N V<sup>2</sup></i> also increases, so that the local Doppler shift (<i><b>k.V</b></i>) increases for a given <i><b>k</b></i>. If <i><b>V</b></i> increases, a given frequency <i>f</i> will be reached by fluctuations with a smaller <i>k</i>, which are more intense: the variations of &delta;<i>B</i><sup>2</sup> (10 Hz) with <i>P<sub>DYN</sub><sup>SW</sup></i> are only due to the Doppler shift in the spacecraft frame. We show that the e.m. spectrum in the plasma frame has an invariant shape <i>I<sub>1D</sub></i>&#x221D;<i>A<sub>em</sub></i> (<i>kc/&omega;<sub>pe</sub></i>)<sup>&minus;&nu;</sup> related to the electron inertial length <i>c/&omega;<sub>pe</sub></i>: the intensity <i>A<sub>em</sub></i> does not depend on <i>P<sub>DYN</sub></i>, nor on the electron to proton temperature ratio <i>T<sub>e</sub>/T<sub>p</sub></i>, nor on the upstream bow shock angle &theta;<i><sub>BN</sub></i>. Then, we show results of 3-D MHD numerical simulations of the magnetosheath plasma, which map the regions where the angle &Theta;<sub><i>BV</i></sub> is &#x2243;90&deg;. The e.m. fluctuations are more intense in these magnetosheath regions, in the spacecraft frame where they are observed in the "whistler" range; and the e.s. fluctuations are less intense in these same regions, in the spacecraft frame where they are observed in the "ion acoustic" range. We conclude that the intensity of the permanent fluctuations in the e.m. range only depends on the Doppler shift, so that from day to day and from place to place in the magnetosheath, the <i><b>k</b></i> spectrum in the plasma frame has an invariant shape and a constant intensity. This is observed on scales ranging from <i>kc/&omega;<sub>pe</sub></i>&#x2243;0.3 (50 km) to <i>kc/&omega;<sub>pe</sub></i>&#x2243;30 (500 m), i.e. at electron scales smaller than the Cluster separation.
url https://www.ann-geophys.net/24/3523/2006/angeo-24-3523-2006.pdf
work_keys_str_mv AT clacombe clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT aasamsonov clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT amangeney clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT mmaksimovic clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT ncornilleauwehrlin clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT ccharvey clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT jmbosqued clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
AT ptravnicek clusterobservationsinthemagnetosheathndashpart2intensityoftheturbulenceatelectronscales
_version_ 1725657082808500224
spelling doaj-cbb48908c7554fa4bd5c7bfaf320c27c2020-11-24T22:55:18ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762006-12-01243523353110.5194/angeo-24-3523-2006Cluster observations in the magnetosheath &ndash; Part 2: Intensity of the turbulence at electron scalesC. Lacombe0A. A. Samsonov1A. Mangeney2M. Maksimovic3N. Cornilleau-Wehrlin4C. C. Harvey5J.-M. Bosqued6P. Trávníček7LESIA/CNRS, Observatoire de Paris, Meudon, FranceInstitute of Physics, St. Petersburg State University, St. Petersburg, RussiaLESIA/CNRS, Observatoire de Paris, Meudon, FranceLESIA/CNRS, Observatoire de Paris, Meudon, FranceCentre d'étude des Environnements Terrestre et Planétaire/UVSQ, Vélizy, FranceCentre d'Etude Spatiale des Rayonnements/CNRS, Toulouse, FranceCentre d'Etude Spatiale des Rayonnements/CNRS, Toulouse, FranceInstitute of Atmospheric Physics, Prague, Czech RepublicThe Cluster STAFF Spectral Analyser measures the magnetic and electric power spectral densities (PSD) &delta;<i>B</i><sup>2</sup> and &delta;<i>E</i><sup>2</sup> in the magnetosheath between 8 Hz and 4 kHz, i.e. between about the lower hybrid frequency and 10 times the proton plasma frequency. We study about 23 h of data on four different days. We do not consider the whistler waves and the electrostatic pulses (which are not always observed) but the underlying permanent fluctuations. Paper 1 (Mangeney et al., 2006) shows why the permanent PSD at a given frequency <i>f</i> depends strongly on the angle &Theta;<i><sub>BV</sub></i> between the magnetic field <i><b>B</b></i> and the flow velocity <i><b>V</b></i>: this is observed for the electromagnetic (e.m.) fluctuations, &delta;<i>B</i><sup>2</sup> and &delta;<i>E<sub>em</sub></i><sup>2</sup>, below the electron cyclotron frequency <i>f<sub>ce</sub></i>, and for the electrostatic (e.s.) fluctuations &delta;<i>E<sub>es</sub></i><sup>2</sup> at and above <i>f<sub>ce</sub></i>. This dependence is due to the Doppler shift of fluctuations which have a highly anisotropic distribution of the intensity of the wave vector <i><b>k</b></i> spectrum, and have a power law intensity &#x221D;<i>k</i><sup>&minus;&nu;</sup> with &nu;&#x2243;3 to 4. In the present paper, we look for parameters, other than &Theta;<sub><i>BV</i></sub>, which control the intensity of the fluctuations. At <i>f</i>&#x2243;10 Hz, &delta;<i>B</i><sup>2</sup> and &delta;<i>E</i><sup>2</sup><sub><i>em</i></sub> increase when the solar wind dynamic pressure <i>P<sub>DYN</sub><sup>SW</sup></i> increases. When <i>P<sub>DYN</sub><sup>SW</sup> </i>increases, the magnetosheath <i>P<sub>DYN</sub><sup>MS</sup></i>&#x221D;<i>N V<sup>2</sup></i> also increases, so that the local Doppler shift (<i><b>k.V</b></i>) increases for a given <i><b>k</b></i>. If <i><b>V</b></i> increases, a given frequency <i>f</i> will be reached by fluctuations with a smaller <i>k</i>, which are more intense: the variations of &delta;<i>B</i><sup>2</sup> (10 Hz) with <i>P<sub>DYN</sub><sup>SW</sup></i> are only due to the Doppler shift in the spacecraft frame. We show that the e.m. spectrum in the plasma frame has an invariant shape <i>I<sub>1D</sub></i>&#x221D;<i>A<sub>em</sub></i> (<i>kc/&omega;<sub>pe</sub></i>)<sup>&minus;&nu;</sup> related to the electron inertial length <i>c/&omega;<sub>pe</sub></i>: the intensity <i>A<sub>em</sub></i> does not depend on <i>P<sub>DYN</sub></i>, nor on the electron to proton temperature ratio <i>T<sub>e</sub>/T<sub>p</sub></i>, nor on the upstream bow shock angle &theta;<i><sub>BN</sub></i>. Then, we show results of 3-D MHD numerical simulations of the magnetosheath plasma, which map the regions where the angle &Theta;<sub><i>BV</i></sub> is &#x2243;90&deg;. The e.m. fluctuations are more intense in these magnetosheath regions, in the spacecraft frame where they are observed in the "whistler" range; and the e.s. fluctuations are less intense in these same regions, in the spacecraft frame where they are observed in the "ion acoustic" range. We conclude that the intensity of the permanent fluctuations in the e.m. range only depends on the Doppler shift, so that from day to day and from place to place in the magnetosheath, the <i><b>k</b></i> spectrum in the plasma frame has an invariant shape and a constant intensity. This is observed on scales ranging from <i>kc/&omega;<sub>pe</sub></i>&#x2243;0.3 (50 km) to <i>kc/&omega;<sub>pe</sub></i>&#x2243;30 (500 m), i.e. at electron scales smaller than the Cluster separation.https://www.ann-geophys.net/24/3523/2006/angeo-24-3523-2006.pdf