A Compressive Sensing Model for Speeding Up Text Classification

Text classification plays an important role in various applications of big data by automatically classifying massive text documents. However, high dimensionality and sparsity of text features have presented a challenge to efficient classification. In this paper, we propose a compressive sensing- (CS...

Full description

Bibliographic Details
Main Authors: Kelin Shen, Peinan Hao, Ran Li
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2020/8879795
Description
Summary:Text classification plays an important role in various applications of big data by automatically classifying massive text documents. However, high dimensionality and sparsity of text features have presented a challenge to efficient classification. In this paper, we propose a compressive sensing- (CS-) based model to speed up text classification. Using CS to reduce the size of feature space, our model has a low time and space complexity while training a text classifier, and the restricted isometry property (RIP) of CS ensures that pairwise distances between text features can be well preserved in the process of dimensionality reduction. In particular, by structural random matrices (SRMs), CS is free from computation and memory limitations in the construction of random projections. Experimental results demonstrate that CS effectively accelerates the text classification while hardly causing any accuracy loss.
ISSN:1687-5265
1687-5273