Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study
Introduction: Biological testing of biomaterials on dental pulp stem cells (DPSCs) is one recent advance in endodontic research. The aim of this study was to compare the cytotoxicity, cell attachment properties, and dentinogenic differentiation potential of extracts of white mineral trioxide aggrega...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2018-01-01
|
Series: | Saudi Endodontic Journal |
Subjects: | |
Online Access: | http://www.saudiendodj.com//article.asp?issn=1658-5984;year=2018;volume=8;issue=1;spage=25;epage=33;aulast=Ahmed |
id |
doaj-cb9cffff5cf4489699adbeaf60f56d5f |
---|---|
record_format |
Article |
spelling |
doaj-cb9cffff5cf4489699adbeaf60f56d5f2020-11-25T00:46:31ZengWolters Kluwer Medknow PublicationsSaudi Endodontic Journal2320-14952018-01-0181253310.4103/sej.sej_40_17Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro studyHany Mohamed Aly AhmedNorhayati LuddinThirumulu Ponnuraj KannanKhairani Idah MokhtarAzlina AhmadIntroduction: Biological testing of biomaterials on dental pulp stem cells (DPSCs) is one recent advance in endodontic research. The aim of this study was to compare the cytotoxicity, cell attachment properties, and dentinogenic differentiation potential of extracts of white mineral trioxide aggregate (WMTA)/calcium chloride dihydrate CaCl2.2H2O combination (fast-set WMTA [FS WMTA]) to that of WMTA on DPSCs. Materials and Methods: The cytotoxicity and cell attachment properties were evaluated on DPSCs using methyl-thiazol-diphenyltetrazolium assay and under scanning electron microscope, respectively. After 1, 3, and 7 days of incubation, the expression of four dentinogenic gene markers (BGLAP, DSPP, RUNX2, and SPP1) was examined using the real-time polymerase chain reaction. Mann-Whitney test and one-way analysis of variance were used for statistical analysis (P = 0.05). Results: While WMTA showed favorable cytotoxicity and cell attachment properties, FS WMTA demonstrated severe/moderate cytotoxicity at three successive concentrations (P < 0.05), and the cell attachment properties were less favorable. However, DPSCs treated with FS WMTA extracts showed higher expressions of dentinogenic gene markers than WMTA (P < 0.05). BGLAP and SPP1 were down- and up-regulated in both groups at all-time intervals, respectively. DSPP was upregulated only in WMTA at day 3 compared to days 1 and 7 in FS WMTA. RUNX2 was upregulated at all-time intervals only in FS WMTA. Conclusions: The addition of CaCl2.2H2O increases the cytotoxicity but enhances the dentinogenic differentiation potential of WMTA on DPSCs.http://www.saudiendodj.com//article.asp?issn=1658-5984;year=2018;volume=8;issue=1;spage=25;epage=33;aulast=AhmedCalcium chloride dihydratecell attachmentcytotoxicitydentinogenic differentiationwhite mineral trioxide aggregate |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hany Mohamed Aly Ahmed Norhayati Luddin Thirumulu Ponnuraj Kannan Khairani Idah Mokhtar Azlina Ahmad |
spellingShingle |
Hany Mohamed Aly Ahmed Norhayati Luddin Thirumulu Ponnuraj Kannan Khairani Idah Mokhtar Azlina Ahmad Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study Saudi Endodontic Journal Calcium chloride dihydrate cell attachment cytotoxicity dentinogenic differentiation white mineral trioxide aggregate |
author_facet |
Hany Mohamed Aly Ahmed Norhayati Luddin Thirumulu Ponnuraj Kannan Khairani Idah Mokhtar Azlina Ahmad |
author_sort |
Hany Mohamed Aly Ahmed |
title |
Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study |
title_short |
Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study |
title_full |
Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study |
title_fullStr |
Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study |
title_full_unstemmed |
Calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: An in vitro study |
title_sort |
calcium chloride dihydrate affects the biological properties of white mineral trioxide aggregate on dental pulp stem cells: an in vitro study |
publisher |
Wolters Kluwer Medknow Publications |
series |
Saudi Endodontic Journal |
issn |
2320-1495 |
publishDate |
2018-01-01 |
description |
Introduction: Biological testing of biomaterials on dental pulp stem cells (DPSCs) is one recent advance in endodontic research. The aim of this study was to compare the cytotoxicity, cell attachment properties, and dentinogenic differentiation potential of extracts of white mineral trioxide aggregate (WMTA)/calcium chloride dihydrate CaCl2.2H2O combination (fast-set WMTA [FS WMTA]) to that of WMTA on DPSCs.
Materials and Methods: The cytotoxicity and cell attachment properties were evaluated on DPSCs using methyl-thiazol-diphenyltetrazolium assay and under scanning electron microscope, respectively. After 1, 3, and 7 days of incubation, the expression of four dentinogenic gene markers (BGLAP, DSPP, RUNX2, and SPP1) was examined using the real-time polymerase chain reaction. Mann-Whitney test and one-way analysis of variance were used for statistical analysis (P = 0.05).
Results: While WMTA showed favorable cytotoxicity and cell attachment properties, FS WMTA demonstrated severe/moderate cytotoxicity at three successive concentrations (P < 0.05), and the cell attachment properties were less favorable. However, DPSCs treated with FS WMTA extracts showed higher expressions of dentinogenic gene markers than WMTA (P < 0.05). BGLAP and SPP1 were down- and up-regulated in both groups at all-time intervals, respectively. DSPP was upregulated only in WMTA at day 3 compared to days 1 and 7 in FS WMTA. RUNX2 was upregulated at all-time intervals only in FS WMTA.
Conclusions: The addition of CaCl2.2H2O increases the cytotoxicity but enhances the dentinogenic differentiation potential of WMTA on DPSCs. |
topic |
Calcium chloride dihydrate cell attachment cytotoxicity dentinogenic differentiation white mineral trioxide aggregate |
url |
http://www.saudiendodj.com//article.asp?issn=1658-5984;year=2018;volume=8;issue=1;spage=25;epage=33;aulast=Ahmed |
work_keys_str_mv |
AT hanymohamedalyahmed calciumchloridedihydrateaffectsthebiologicalpropertiesofwhitemineraltrioxideaggregateondentalpulpstemcellsaninvitrostudy AT norhayatiluddin calciumchloridedihydrateaffectsthebiologicalpropertiesofwhitemineraltrioxideaggregateondentalpulpstemcellsaninvitrostudy AT thirumuluponnurajkannan calciumchloridedihydrateaffectsthebiologicalpropertiesofwhitemineraltrioxideaggregateondentalpulpstemcellsaninvitrostudy AT khairaniidahmokhtar calciumchloridedihydrateaffectsthebiologicalpropertiesofwhitemineraltrioxideaggregateondentalpulpstemcellsaninvitrostudy AT azlinaahmad calciumchloridedihydrateaffectsthebiologicalpropertiesofwhitemineraltrioxideaggregateondentalpulpstemcellsaninvitrostudy |
_version_ |
1725264787276824576 |