The sigma‐1 receptor behaves as an atypical auxiliary subunit to modulate the functional characteristics of Kv1.2 channels expressed in HEK293 cells

Abstract Expression of Kv1.2 within Kv1.x potassium channel complexes is critical in maintaining appropriate neuronal excitability and determining the threshold for action potential firing. This is attributed to the interaction of Kv1.2 with a hitherto unidentified protein that confers bimodal chann...

Full description

Bibliographic Details
Main Authors: Madelyn J. Abraham, Kayla L. Fleming, Sophie Raymond, Adrian Y. C. Wong, Richard Bergeron
Format: Article
Language:English
Published: Wiley 2019-06-01
Series:Physiological Reports
Subjects:
Online Access:https://doi.org/10.14814/phy2.14147
Description
Summary:Abstract Expression of Kv1.2 within Kv1.x potassium channel complexes is critical in maintaining appropriate neuronal excitability and determining the threshold for action potential firing. This is attributed to the interaction of Kv1.2 with a hitherto unidentified protein that confers bimodal channel activation gating, allowing neurons to adapt to repetitive trains of stimulation and protecting against hyperexcitability. One potential protein candidate is the sigma‐1 receptor (Sig‐1R), which regulates other members of the Kv1.x channel family; however, the biophysical nature of the interaction between Sig‐1R and Kv1.2 has not been elucidated. We hypothesized that Sig‐1R may regulate Kv1.2 and may further act as the unidentified modulator of Kv1.2 activation. In transiently transfected HEK293 cells, we found that ligand activation of the Sig‐1R modulates Kv1.2 current amplitude. More importantly, Sig‐1R interacts with Kv1.2 in baseline conditions to influence bimodal activation gating. These effects are abolished in the presence of the auxiliary subunit Kvβ2 and when the Sig‐1R mutation underlying ALS16 (Sig‐1R‐E102Q), is expressed. These data suggest that Kvβ2 occludes the interaction of Sig‐1R with Kv1.2, and that E102 may be a residue critical for Sig‐1R modulation of Kv1.2. The results of this investigation describe an important new role for Sig‐1R in the regulation of neuronal excitability and introduce a novel mechanism of pathophysiology in Sig‐1R dysfunction.
ISSN:2051-817X