Synthesis and physico-chemical characterization of fluoride (F)- and silver (Ag)-substituted sol-gel mesoporous bioactive glasses

Synthesis and use of novel compositions of bioactive glasses (BGs) for hard tissue engineering are of important significance in the biomedical field. In this study, we successfully synthesized a series of 58S-based BGs containing fluoride (F−) and silver (Ag+) ions through a sol-gel method for possi...

Full description

Bibliographic Details
Main Authors: Kargozar Saeid, Baino Francesco, Banijamali Sara, Mozafari Masoud
Format: Article
Language:English
Published: Sciendo 2019-12-01
Series:Biomedical Glasses
Subjects:
Online Access:https://doi.org/10.1515/bglass-2019-0015
Description
Summary:Synthesis and use of novel compositions of bioactive glasses (BGs) for hard tissue engineering are of important significance in the biomedical field. In this study, we successfully synthesized a series of 58S-based BGs containing fluoride (F−) and silver (Ag+) ions through a sol-gel method for possible use in bone/dental regeneration and antibacterial strategies. Characterizations of samples were performed by using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), textural analysis (N2 adsorption-desorption), and morphological observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained data revealed that the fabricated BGs are in a glassy state before incubation in the Kokubo’s simulated body fluid (SBF), and an apatite-like layer is formed on their surface after 7 days of immersion in SBF. The size of the glass particles was in the nano-range (about 100 nm or below), and their pore size was in the mesoporous range (15-25 nm). These early results suggest that the F- and Ag-doped glasses show promise as multifunctional bioactive materials for bone/dental tissue engineering.
ISSN:2299-3932