Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean

<p>The stable oxygen and hydrogen isotopic composition of water vapor over a water body is governed by the isotopic composition of surface water and ambient vapor, exchange and mixing processes at the water–air interface, and the local meteorological conditions. These parameters form inputs to...

Full description

Bibliographic Details
Main Authors: S. S. Dar, P. Ghosh, A. Swaraj, A. Kumar
Format: Article
Language:English
Published: Copernicus Publications 2020-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/11435/2020/acp-20-11435-2020.pdf
id doaj-cb78f819e188455585f00a35efb136f0
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author S. S. Dar
P. Ghosh
P. Ghosh
A. Swaraj
A. Kumar
spellingShingle S. S. Dar
P. Ghosh
P. Ghosh
A. Swaraj
A. Kumar
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Atmospheric Chemistry and Physics
author_facet S. S. Dar
P. Ghosh
P. Ghosh
A. Swaraj
A. Kumar
author_sort S. S. Dar
title Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
title_short Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
title_full Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
title_fullStr Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
title_full_unstemmed Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
title_sort craig–gordon model validation using stable isotope ratios in water vapor over the southern ocean
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-10-01
description <p>The stable oxygen and hydrogen isotopic composition of water vapor over a water body is governed by the isotopic composition of surface water and ambient vapor, exchange and mixing processes at the water–air interface, and the local meteorological conditions. These parameters form inputs to the Craig–Gordon models, used for predicting the isotopic composition of vapor produced from the surface water due to the evaporation process. In this study we present water vapor, surface water isotope ratios and meteorological parameters across latitudinal transects in the Southern Ocean (27.38–69.34 and 21.98–66.8<span class="inline-formula"><sup>∘</sup></span>&thinsp;S) during two austral summers. The performance of Traditional Craig–Gordon (TCG) <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx10">Craig and Gordon</a>, <a href="#bib1.bibx10">1965</a>)</span> and the Unified Craig–Gordon (UCG) <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx16">Gonfiantini et al.</a>, <a href="#bib1.bibx16">2018</a>)</span> models is evaluated to predict the isotopic composition of evaporated water vapor flux in the diverse oceanic settings. The models are run for the molecular diffusivity ratios suggested by <span class="cit" id="xref_text.3"><a href="#bib1.bibx20">Merlivat</a> (<a href="#bib1.bibx20">1978</a>)</span>, <span class="cit" id="xref_text.4"><a href="#bib1.bibx7">Cappa et al.</a> (<a href="#bib1.bibx7">2003</a>)</span> and <span class="cit" id="xref_text.5"><a href="#bib1.bibx24">Pfahl and Wernli</a> (<a href="#bib1.bibx24">2009</a>)</span>, referred to as MJ, CD and PW, respectively, and different turbulent indices (<span class="inline-formula"><i>x</i></span>), i.e., fractional contribution of molecular vs. turbulent diffusion. It is found that the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">UCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.8</mn></mrow><mi mathvariant="normal">MJ</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7a72526eb9d05f6bb93fd3c13dc9f8ae"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00001.svg" width="48pt" height="17pt" src="acp-20-11435-2020-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">UCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.6</mn></mrow><mi mathvariant="normal">CD</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4c6a6b1d8487ac445cfb65a0bcbbe13d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00002.svg" width="48pt" height="17pt" src="acp-20-11435-2020-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.6</mn></mrow><mi mathvariant="normal">MJ</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="875cc7df767fec50f321ddb394a1ecd8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00003.svg" width="47pt" height="17pt" src="acp-20-11435-2020-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.7</mn></mrow><mi mathvariant="normal">CD</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e4d80dd5f27d9d9d667e468bcab2161b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00004.svg" width="47pt" height="17pt" src="acp-20-11435-2020-ie00004.png"/></svg:svg></span></span> models predicted the isotopic composition that best matches with the observations. The relative contribution from locally generated and advected moisture is calculated at the water vapor sampling points, along the latitudinal transects, assigning the representative end-member isotopic compositions, and by solving the two-component mixing model. The results suggest a varying contribution of the advected westerly component, with an increasing trend up to 65<span class="inline-formula"><sup>∘</sup></span>&thinsp;S. Beyond 65<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, the proportion of Antarctic moisture was found to be prominent and increasing linearly towards the coast.</p>
url https://acp.copernicus.org/articles/20/11435/2020/acp-20-11435-2020.pdf
work_keys_str_mv AT ssdar craiggordonmodelvalidationusingstableisotoperatiosinwatervaporoverthesouthernocean
AT pghosh craiggordonmodelvalidationusingstableisotoperatiosinwatervaporoverthesouthernocean
AT pghosh craiggordonmodelvalidationusingstableisotoperatiosinwatervaporoverthesouthernocean
AT aswaraj craiggordonmodelvalidationusingstableisotoperatiosinwatervaporoverthesouthernocean
AT akumar craiggordonmodelvalidationusingstableisotoperatiosinwatervaporoverthesouthernocean
_version_ 1724467298529443840
spelling doaj-cb78f819e188455585f00a35efb136f02020-11-25T03:55:56ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-10-0120114351144910.5194/acp-20-11435-2020Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern OceanS. S. Dar0P. Ghosh1P. Ghosh2A. Swaraj3A. Kumar4Centre for Earth Sciences, Indian Institute of Science, Bengaluru, 560012, Karnataka, IndiaCentre for Earth Sciences, Indian Institute of Science, Bengaluru, 560012, Karnataka, IndiaDivecha Centre for Climate Change, Indian Institute of Science, Bengaluru, 560012, Karnataka, IndiaDivecha Centre for Climate Change, Indian Institute of Science, Bengaluru, 560012, Karnataka, IndiaNational Centre for Polar and Ocean Research, Vasco da Gama, 403804, Goa, India<p>The stable oxygen and hydrogen isotopic composition of water vapor over a water body is governed by the isotopic composition of surface water and ambient vapor, exchange and mixing processes at the water–air interface, and the local meteorological conditions. These parameters form inputs to the Craig–Gordon models, used for predicting the isotopic composition of vapor produced from the surface water due to the evaporation process. In this study we present water vapor, surface water isotope ratios and meteorological parameters across latitudinal transects in the Southern Ocean (27.38–69.34 and 21.98–66.8<span class="inline-formula"><sup>∘</sup></span>&thinsp;S) during two austral summers. The performance of Traditional Craig–Gordon (TCG) <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx10">Craig and Gordon</a>, <a href="#bib1.bibx10">1965</a>)</span> and the Unified Craig–Gordon (UCG) <span class="cit" id="xref_paren.2">(<a href="#bib1.bibx16">Gonfiantini et al.</a>, <a href="#bib1.bibx16">2018</a>)</span> models is evaluated to predict the isotopic composition of evaporated water vapor flux in the diverse oceanic settings. The models are run for the molecular diffusivity ratios suggested by <span class="cit" id="xref_text.3"><a href="#bib1.bibx20">Merlivat</a> (<a href="#bib1.bibx20">1978</a>)</span>, <span class="cit" id="xref_text.4"><a href="#bib1.bibx7">Cappa et al.</a> (<a href="#bib1.bibx7">2003</a>)</span> and <span class="cit" id="xref_text.5"><a href="#bib1.bibx24">Pfahl and Wernli</a> (<a href="#bib1.bibx24">2009</a>)</span>, referred to as MJ, CD and PW, respectively, and different turbulent indices (<span class="inline-formula"><i>x</i></span>), i.e., fractional contribution of molecular vs. turbulent diffusion. It is found that the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">UCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.8</mn></mrow><mi mathvariant="normal">MJ</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7a72526eb9d05f6bb93fd3c13dc9f8ae"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00001.svg" width="48pt" height="17pt" src="acp-20-11435-2020-ie00001.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">UCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.6</mn></mrow><mi mathvariant="normal">CD</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4c6a6b1d8487ac445cfb65a0bcbbe13d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00002.svg" width="48pt" height="17pt" src="acp-20-11435-2020-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.6</mn></mrow><mi mathvariant="normal">MJ</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="875cc7df767fec50f321ddb394a1ecd8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00003.svg" width="47pt" height="17pt" src="acp-20-11435-2020-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi mathvariant="normal">TCG</mi><mrow><mi>x</mi><mo>=</mo><mn mathvariant="normal">0.7</mn></mrow><mi mathvariant="normal">CD</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e4d80dd5f27d9d9d667e468bcab2161b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-11435-2020-ie00004.svg" width="47pt" height="17pt" src="acp-20-11435-2020-ie00004.png"/></svg:svg></span></span> models predicted the isotopic composition that best matches with the observations. The relative contribution from locally generated and advected moisture is calculated at the water vapor sampling points, along the latitudinal transects, assigning the representative end-member isotopic compositions, and by solving the two-component mixing model. The results suggest a varying contribution of the advected westerly component, with an increasing trend up to 65<span class="inline-formula"><sup>∘</sup></span>&thinsp;S. Beyond 65<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, the proportion of Antarctic moisture was found to be prominent and increasing linearly towards the coast.</p>https://acp.copernicus.org/articles/20/11435/2020/acp-20-11435-2020.pdf