Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal hom...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2011-12-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/1422-0067/12/12/9576/ |
id |
doaj-cb437f675f934004b3866673677f2f20 |
---|---|
record_format |
Article |
spelling |
doaj-cb437f675f934004b3866673677f2f202020-11-24T21:25:20ZengMDPI AGInternational Journal of Molecular Sciences1422-00672011-12-0112129576959510.3390/ijms12129576Advances in Carcinogenic Metal Toxicity and Potential Molecular MarkersPreeyaporn KoedrithYoung Rok SeoMetal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.http://www.mdpi.com/1422-0067/12/12/9576/carcinogenicityDNA damageDNA repairgenotoxicityheavy metaloxidative stress |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Preeyaporn Koedrith Young Rok Seo |
spellingShingle |
Preeyaporn Koedrith Young Rok Seo Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers International Journal of Molecular Sciences carcinogenicity DNA damage DNA repair genotoxicity heavy metal oxidative stress |
author_facet |
Preeyaporn Koedrith Young Rok Seo |
author_sort |
Preeyaporn Koedrith |
title |
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_short |
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_full |
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_fullStr |
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_full_unstemmed |
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_sort |
advances in carcinogenic metal toxicity and potential molecular markers |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2011-12-01 |
description |
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression. |
topic |
carcinogenicity DNA damage DNA repair genotoxicity heavy metal oxidative stress |
url |
http://www.mdpi.com/1422-0067/12/12/9576/ |
work_keys_str_mv |
AT preeyapornkoedrith advancesincarcinogenicmetaltoxicityandpotentialmolecularmarkers AT youngrokseo advancesincarcinogenicmetaltoxicityandpotentialmolecularmarkers |
_version_ |
1725983318413934592 |