Gamma oscillations of spiking neural populations enhance signal discrimination.
Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by whi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2007-11-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.0030236 |
id |
doaj-cb3f159c060840739f7ed566e7980087 |
---|---|
record_format |
Article |
spelling |
doaj-cb3f159c060840739f7ed566e79800872021-04-21T15:21:18ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582007-11-01311e23610.1371/journal.pcbi.0030236Gamma oscillations of spiking neural populations enhance signal discrimination.Naoki MasudaBrent DoironSelective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive.https://doi.org/10.1371/journal.pcbi.0030236 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Naoki Masuda Brent Doiron |
spellingShingle |
Naoki Masuda Brent Doiron Gamma oscillations of spiking neural populations enhance signal discrimination. PLoS Computational Biology |
author_facet |
Naoki Masuda Brent Doiron |
author_sort |
Naoki Masuda |
title |
Gamma oscillations of spiking neural populations enhance signal discrimination. |
title_short |
Gamma oscillations of spiking neural populations enhance signal discrimination. |
title_full |
Gamma oscillations of spiking neural populations enhance signal discrimination. |
title_fullStr |
Gamma oscillations of spiking neural populations enhance signal discrimination. |
title_full_unstemmed |
Gamma oscillations of spiking neural populations enhance signal discrimination. |
title_sort |
gamma oscillations of spiking neural populations enhance signal discrimination. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Computational Biology |
issn |
1553-734X 1553-7358 |
publishDate |
2007-11-01 |
description |
Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive. |
url |
https://doi.org/10.1371/journal.pcbi.0030236 |
work_keys_str_mv |
AT naokimasuda gammaoscillationsofspikingneuralpopulationsenhancesignaldiscrimination AT brentdoiron gammaoscillationsofspikingneuralpopulationsenhancesignaldiscrimination |
_version_ |
1714667443922665472 |