A Microdialysis in Adjuvant Arthritic Rats for Pharmacokinetics–Pharmacodynamics Modeling Study of Geniposide with Determination of Drug Concentration and Efficacy Levels in Dialysate

Microdialysis, a sampling method for pharmacokinetics–pharmacodynamics (PK–PD) modeling in preclinical and clinical studies, is a convenient in vivo sampling technique. Geniposide (GE), an iridoid glycoside compound, is the major active ingredient of Gardenia jasminoides Ellis fruit which has an ant...

Full description

Bibliographic Details
Main Authors: Ran Deng, Wei Wang, Hong Wu, Yunjing Zhang, Wenyu Wang, Li Dai, Zhengrong Zhang, Jun Fu, Feng Li
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/5/987
Description
Summary:Microdialysis, a sampling method for pharmacokinetics–pharmacodynamics (PK–PD) modeling in preclinical and clinical studies, is a convenient in vivo sampling technique. Geniposide (GE), an iridoid glycoside compound, is the major active ingredient of Gardenia jasminoides Ellis fruit which has an anti-inflammatory effect. In this study, an articular cavity microdialysis sampling system for adjuvant arthritic (AA) rats was established to study the effect of GE on the release of prostaglandin E2 (PGE2) in AA rats induced by Freund’s complete adjuvant (FCA). An UHPLC-MS/MS method was developed to determine the concentrations of GE and PGE2 in the dialysate. Through the determination of drug concentrations and PGE2 efficacy levels in the dialysate, the developed methods were successfully applied to set up concentration–time and effect–time profiles followed by PK–PD modeling of GE’s effect on decreasing PGE2 release after oral administration of GE. The effect was well described by the developed PK–PD modeling, indicating that GE may play an anti-inflammatory role via decreasing AA-induced elevated PGE2 levels. In the selection of suitable endogenous small molecules as effect markers, the establishment of AA rat joint-cavity microdialysis is an attractive technique for rational PK–PD studies.
ISSN:1420-3049