GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama
A GIS-enabled culvert design module is presented. This module employs Python programming to combine a proposed culvert location, topography, land use, and rainfall data to automatically design a culvert. The module is embedded within ESRI ArcGIS 10.4 software, providing a seamless single platform th...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/4648134 |
id |
doaj-cb3697861fc44485870b36c88c719815 |
---|---|
record_format |
Article |
spelling |
doaj-cb3697861fc44485870b36c88c7198152020-11-25T00:15:13ZengHindawi LimitedAdvances in Civil Engineering1687-80861687-80942018-01-01201810.1155/2018/46481344648134GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, AlabamaAshton D. Greer0Zachary B. Wilbanks1Leah D. Clifton2Bradford Wilson3Andrew J. Graettinger4Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35401, USADepartment of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35401, USADepartment of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35401, USADepartment of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35401, USADepartment of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35401, USAA GIS-enabled culvert design module is presented. This module employs Python programming to combine a proposed culvert location, topography, land use, and rainfall data to automatically design a culvert. The module is embedded within ESRI ArcGIS 10.4 software, providing a seamless single platform that eliminates error propagation associated with cross-platform data transfer as well as providing 95% time savings over traditional calculation methods. The module uses United States Geological Survey digital elevation data to analyze watershed topography. Runoff coefficients are determined from data available through the National Land Cover Database. Rainfall data are retrieved from the National Oceanic and Atmospheric Administration and combined with watershed and land use information to calculate peak discharge using the rational method. Peak discharge is then combined with culvert design parameters to design a single-barrel culvert. The module was used to redesign ten existing culverts along a highway in Tuscaloosa, Alabama, resulting in designs for updated land cover and rainfall conditions. Results from the techniques developed herein can be used for planning purposes and to highlight vulnerabilities in the existing infrastructure. The automation methods may be extended to other hydrologic objectives and runoff mitigation design such as open-channel design and detention or retention ponds.http://dx.doi.org/10.1155/2018/4648134 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ashton D. Greer Zachary B. Wilbanks Leah D. Clifton Bradford Wilson Andrew J. Graettinger |
spellingShingle |
Ashton D. Greer Zachary B. Wilbanks Leah D. Clifton Bradford Wilson Andrew J. Graettinger GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama Advances in Civil Engineering |
author_facet |
Ashton D. Greer Zachary B. Wilbanks Leah D. Clifton Bradford Wilson Andrew J. Graettinger |
author_sort |
Ashton D. Greer |
title |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
title_short |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
title_full |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
title_fullStr |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
title_full_unstemmed |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
title_sort |
gis-enabled culvert design: a case study in tuscaloosa, alabama |
publisher |
Hindawi Limited |
series |
Advances in Civil Engineering |
issn |
1687-8086 1687-8094 |
publishDate |
2018-01-01 |
description |
A GIS-enabled culvert design module is presented. This module employs Python programming to combine a proposed culvert location, topography, land use, and rainfall data to automatically design a culvert. The module is embedded within ESRI ArcGIS 10.4 software, providing a seamless single platform that eliminates error propagation associated with cross-platform data transfer as well as providing 95% time savings over traditional calculation methods. The module uses United States Geological Survey digital elevation data to analyze watershed topography. Runoff coefficients are determined from data available through the National Land Cover Database. Rainfall data are retrieved from the National Oceanic and Atmospheric Administration and combined with watershed and land use information to calculate peak discharge using the rational method. Peak discharge is then combined with culvert design parameters to design a single-barrel culvert. The module was used to redesign ten existing culverts along a highway in Tuscaloosa, Alabama, resulting in designs for updated land cover and rainfall conditions. Results from the techniques developed herein can be used for planning purposes and to highlight vulnerabilities in the existing infrastructure. The automation methods may be extended to other hydrologic objectives and runoff mitigation design such as open-channel design and detention or retention ponds. |
url |
http://dx.doi.org/10.1155/2018/4648134 |
work_keys_str_mv |
AT ashtondgreer gisenabledculvertdesignacasestudyintuscaloosaalabama AT zacharybwilbanks gisenabledculvertdesignacasestudyintuscaloosaalabama AT leahdclifton gisenabledculvertdesignacasestudyintuscaloosaalabama AT bradfordwilson gisenabledculvertdesignacasestudyintuscaloosaalabama AT andrewjgraettinger gisenabledculvertdesignacasestudyintuscaloosaalabama |
_version_ |
1725388101519409152 |