Metal-Free Half-Metallicity in B-Doped gh-C3N4 Systems
Abstract Half-metallicity rising from the s/p electrons has been one of the hot topics in spintronics. Based on the first-principles of calculation, we explore the magnetic properties of the B-doped graphitic heptazine carbon nitride (gh-C3N4) system. Ferromagnetism is observed in the B-doped gh-C3N...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-02-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s11671-018-2473-x |
Summary: | Abstract Half-metallicity rising from the s/p electrons has been one of the hot topics in spintronics. Based on the first-principles of calculation, we explore the magnetic properties of the B-doped graphitic heptazine carbon nitride (gh-C3N4) system. Ferromagnetism is observed in the B-doped gh-C3N4 system. Interestingly, its ground state phase (BC1@gh-C3N4) presents a strong half-metal property. Furthermore, the half-metallicity in BC1@gh-C3N4 can sustain up to 5% compressive strain and 1.5% tensile strain. It will lose its half-metallicity, however, when the doping concentration is below 6.25%. Our results show that such a metal-free half-metallic system has promising spintronic applications. |
---|---|
ISSN: | 1931-7573 1556-276X |