POSCA: A computer code for fission product plateout and circulating coolant activities within the primary circuit of a high temperature gas-cooled reactor

Numerical prediction of fission product plateout and circulating coolant activities under normal operating conditions is crucial in the design of a high temperature gas-cooled reactor (HTGR). The results are used for the maintenance and repair of the components as well as the safety analysis regardi...

Full description

Bibliographic Details
Main Authors: Nam-il Tak, Jeong-Hun Lee, Sung Nam Lee, Chang Keun Jo
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573319302074
Description
Summary:Numerical prediction of fission product plateout and circulating coolant activities under normal operating conditions is crucial in the design of a high temperature gas-cooled reactor (HTGR). The results are used for the maintenance and repair of the components as well as the safety analysis regarding early source terms under loss of coolant accident scenarios. In this work, a new computer code named POSCA (Plate-Out Surface and Circulating Activities) was developed based on a one-dimensional model to evaluate fission product plateout and circulating coolant activities within the primary circuit of a HTGR. The verification and validation of study for the POSCA code was done using available analytical results and two in-pile experiments (i.e., OGL-1 and VAMPYR-1). The results of the POSCA calculations show that POSCA is able to simulate plateout and circulating coolant activities in a HTGR with fast computation and reasonable accuracy.
ISSN:1738-5733