Small deviations for admixture additive & multiplicative processes
Abstract Define the admixture additive processes Xγ,H,αa1,a2,a3,a4(t)≜a1B(t1)+a2Wγ(t2)+a3BH(t3)+a4Sα(t4)∈R, $$\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})\triangleq a_{1}B(t_{1})+a_{2}W_{\gamma}(t_{2})+a_{3}B_{H}(t_{3})+a_{4}S_{\alpha}(t_{4}) \in\mathbb{R}, $$ and the admixt...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-08-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1798-4 |
id |
doaj-cb06e553550043b5afbc0b43452e03e6 |
---|---|
record_format |
Article |
spelling |
doaj-cb06e553550043b5afbc0b43452e03e62020-11-25T01:39:57ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-08-012018111210.1186/s13660-018-1798-4Small deviations for admixture additive & multiplicative processesMingjie Liang0Bingyao Wu1College of Mathematics and Informatics, Fujian Normal UniversityCollege of Mathematics and Informatics, Fujian Normal UniversityAbstract Define the admixture additive processes Xγ,H,αa1,a2,a3,a4(t)≜a1B(t1)+a2Wγ(t2)+a3BH(t3)+a4Sα(t4)∈R, $$\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})\triangleq a_{1}B(t_{1})+a_{2}W_{\gamma}(t_{2})+a_{3}B_{H}(t_{3})+a_{4}S_{\alpha}(t_{4}) \in\mathbb{R}, $$ and the admixture multiplicative processes Yγ,H,α(t)≜B(t1)⋅Wγ(t2)⋅BH(t3)⋅Sα(t4)∈R, $$\mathbb{Y}_{\gamma,H,\alpha}(\mathrm{t})\triangleq B(t_{1})\cdot W_{\gamma}(t_{2})\cdot B_{H}(t_{3})\cdot S_{\alpha}(t_{4})\in\mathbb{R}, $$ where t=(t1,t2,t3,t4)∈R+4,a1,a2,a3,a4 $\mathrm{t}=(t_{1},t_{2},t_{3},t_{4})\in\mathbb{R}_{+}^{\mathrm{4}},a_{1},a_{2},a_{3},a_{4}$ are finite constants, B(t1) $B(t_{1})$ is the standard Brownian motion, Wγ(t2) $W_{\gamma}(t_{2})$ is the fractional integrated Brownian motion with index parameter γ>−1/2 $\gamma>-1/2$, BH(t3) $B_{H}(t_{3})$ is the fractional Brownian motion with Hurst parameter H∈(0,1) $H\in(0,1)$, Sα(t4) $S_{\alpha}(t_{4})$ is the stable process with index α∈(0,2] $\alpha\in(0,2]$, and they are independent of each other. The small deviation for Xγ,H,αa1,a2,a3,a4(t) $\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})$ and the lower bound of small deviation for Yγ,H,α(t) $\mathbb{Y}_{\gamma,H,\alpha}(\mathrm{t})$ are obtained. As an application, limit inf type LIL is given for Xγ,H,αa1,a2,a3,a4(t) $\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})$.http://link.springer.com/article/10.1186/s13660-018-1798-4Small deviationAdmixture additive processAdmixture multiplicative processLimit theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mingjie Liang Bingyao Wu |
spellingShingle |
Mingjie Liang Bingyao Wu Small deviations for admixture additive & multiplicative processes Journal of Inequalities and Applications Small deviation Admixture additive process Admixture multiplicative process Limit theorem |
author_facet |
Mingjie Liang Bingyao Wu |
author_sort |
Mingjie Liang |
title |
Small deviations for admixture additive & multiplicative processes |
title_short |
Small deviations for admixture additive & multiplicative processes |
title_full |
Small deviations for admixture additive & multiplicative processes |
title_fullStr |
Small deviations for admixture additive & multiplicative processes |
title_full_unstemmed |
Small deviations for admixture additive & multiplicative processes |
title_sort |
small deviations for admixture additive & multiplicative processes |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-08-01 |
description |
Abstract Define the admixture additive processes Xγ,H,αa1,a2,a3,a4(t)≜a1B(t1)+a2Wγ(t2)+a3BH(t3)+a4Sα(t4)∈R, $$\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})\triangleq a_{1}B(t_{1})+a_{2}W_{\gamma}(t_{2})+a_{3}B_{H}(t_{3})+a_{4}S_{\alpha}(t_{4}) \in\mathbb{R}, $$ and the admixture multiplicative processes Yγ,H,α(t)≜B(t1)⋅Wγ(t2)⋅BH(t3)⋅Sα(t4)∈R, $$\mathbb{Y}_{\gamma,H,\alpha}(\mathrm{t})\triangleq B(t_{1})\cdot W_{\gamma}(t_{2})\cdot B_{H}(t_{3})\cdot S_{\alpha}(t_{4})\in\mathbb{R}, $$ where t=(t1,t2,t3,t4)∈R+4,a1,a2,a3,a4 $\mathrm{t}=(t_{1},t_{2},t_{3},t_{4})\in\mathbb{R}_{+}^{\mathrm{4}},a_{1},a_{2},a_{3},a_{4}$ are finite constants, B(t1) $B(t_{1})$ is the standard Brownian motion, Wγ(t2) $W_{\gamma}(t_{2})$ is the fractional integrated Brownian motion with index parameter γ>−1/2 $\gamma>-1/2$, BH(t3) $B_{H}(t_{3})$ is the fractional Brownian motion with Hurst parameter H∈(0,1) $H\in(0,1)$, Sα(t4) $S_{\alpha}(t_{4})$ is the stable process with index α∈(0,2] $\alpha\in(0,2]$, and they are independent of each other. The small deviation for Xγ,H,αa1,a2,a3,a4(t) $\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})$ and the lower bound of small deviation for Yγ,H,α(t) $\mathbb{Y}_{\gamma,H,\alpha}(\mathrm{t})$ are obtained. As an application, limit inf type LIL is given for Xγ,H,αa1,a2,a3,a4(t) $\mathbb{X}^{a_{1}, a_{2}, a_{3}, a_{4}}_{\gamma,H,\alpha}(\mathrm{t})$. |
topic |
Small deviation Admixture additive process Admixture multiplicative process Limit theorem |
url |
http://link.springer.com/article/10.1186/s13660-018-1798-4 |
work_keys_str_mv |
AT mingjieliang smalldeviationsforadmixtureadditivemultiplicativeprocesses AT bingyaowu smalldeviationsforadmixtureadditivemultiplicativeprocesses |
_version_ |
1725048165866930176 |