L-Stable Block Backward Differentiation Formula for Parabolic Partial Differential Equations
In this paper, an L-stable Second Derivative Block Backward Differentiation Formula (SDBBDF) of order 5 is presented for the solutions of parabolic equations. It applied the use of the classical method of lines for the discretization of the parabolic equations. The method reduces the one-dimensional...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-06-01
|
Series: | Ain Shams Engineering Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2090447916000228 |
Summary: | In this paper, an L-stable Second Derivative Block Backward Differentiation Formula (SDBBDF) of order 5 is presented for the solutions of parabolic equations. It applied the use of the classical method of lines for the discretization of the parabolic equations. The method reduces the one-dimensional parabolic partial differential equation which has integral or non-integral boundary conditions to a system of Ordinary Differential Equations (ODEs) with initial conditions. The stability properties of the block method are investigated using the boundary locus plot and the method was found to be L-stable. The derived method is implemented on standard problems of parabolic equations and the results obtained show that the method is accurate and efficient. |
---|---|
ISSN: | 2090-4479 |