Quantum Hopfield Model

We find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi>...

Full description

Bibliographic Details
Main Authors: Masha Shcherbina, Brunello Tirozzi, Camillo Tassi
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/2/2/12
id doaj-cafc806984a148dc8d290eab19ccef85
record_format Article
spelling doaj-cafc806984a148dc8d290eab19ccef852020-11-25T03:14:48ZengMDPI AGPhysics2624-81742020-05-0121218419610.3390/physics2020012Quantum Hopfield ModelMasha Shcherbina0Brunello Tirozzi1Camillo Tassi2Institute for Low Temperatures, 61103 Kharkov, UkraineDepartment of Physics, University of “La Sapienza”, 00185 Rome, ItalyDepartment of Physics and Nanoscience Center, University of Jyväskylä, 40500 Jyväskylä, FinlandWe find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi> <mi>z</mi> </msubsup> </semantics> </math> </inline-formula> is a long range two-body random interaction. The randomness in the couplings is the typical interaction of the Hopfield model with <i>p</i> patterns (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>), where the patterns are <i>p</i> sequences of <i>N</i> independent identically distributed random variables (i.i.d.r.v.), assuming values <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> with probability <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. We show also that in the case <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>≤</mo> <mi>α</mi> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the free-energy is asymptotically independent from the choice of the patterns, i.e., it is self-averaging.https://www.mdpi.com/2624-8174/2/2/12disordered systemspatternsself-averagingoverlap parametersfree-energy
collection DOAJ
language English
format Article
sources DOAJ
author Masha Shcherbina
Brunello Tirozzi
Camillo Tassi
spellingShingle Masha Shcherbina
Brunello Tirozzi
Camillo Tassi
Quantum Hopfield Model
Physics
disordered systems
patterns
self-averaging
overlap parameters
free-energy
author_facet Masha Shcherbina
Brunello Tirozzi
Camillo Tassi
author_sort Masha Shcherbina
title Quantum Hopfield Model
title_short Quantum Hopfield Model
title_full Quantum Hopfield Model
title_fullStr Quantum Hopfield Model
title_full_unstemmed Quantum Hopfield Model
title_sort quantum hopfield model
publisher MDPI AG
series Physics
issn 2624-8174
publishDate 2020-05-01
description We find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi> <mi>z</mi> </msubsup> </semantics> </math> </inline-formula> is a long range two-body random interaction. The randomness in the couplings is the typical interaction of the Hopfield model with <i>p</i> patterns (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>), where the patterns are <i>p</i> sequences of <i>N</i> independent identically distributed random variables (i.i.d.r.v.), assuming values <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> with probability <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. We show also that in the case <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>≤</mo> <mi>α</mi> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the free-energy is asymptotically independent from the choice of the patterns, i.e., it is self-averaging.
topic disordered systems
patterns
self-averaging
overlap parameters
free-energy
url https://www.mdpi.com/2624-8174/2/2/12
work_keys_str_mv AT mashashcherbina quantumhopfieldmodel
AT brunellotirozzi quantumhopfieldmodel
AT camillotassi quantumhopfieldmodel
_version_ 1724642338154741760