Quantum Hopfield Model
We find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Physics |
Subjects: | |
Online Access: | https://www.mdpi.com/2624-8174/2/2/12 |
id |
doaj-cafc806984a148dc8d290eab19ccef85 |
---|---|
record_format |
Article |
spelling |
doaj-cafc806984a148dc8d290eab19ccef852020-11-25T03:14:48ZengMDPI AGPhysics2624-81742020-05-0121218419610.3390/physics2020012Quantum Hopfield ModelMasha Shcherbina0Brunello Tirozzi1Camillo Tassi2Institute for Low Temperatures, 61103 Kharkov, UkraineDepartment of Physics, University of “La Sapienza”, 00185 Rome, ItalyDepartment of Physics and Nanoscience Center, University of Jyväskylä, 40500 Jyväskylä, FinlandWe find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi> <mi>z</mi> </msubsup> </semantics> </math> </inline-formula> is a long range two-body random interaction. The randomness in the couplings is the typical interaction of the Hopfield model with <i>p</i> patterns (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>), where the patterns are <i>p</i> sequences of <i>N</i> independent identically distributed random variables (i.i.d.r.v.), assuming values <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> with probability <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. We show also that in the case <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>≤</mo> <mi>α</mi> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the free-energy is asymptotically independent from the choice of the patterns, i.e., it is self-averaging.https://www.mdpi.com/2624-8174/2/2/12disordered systemspatternsself-averagingoverlap parametersfree-energy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Masha Shcherbina Brunello Tirozzi Camillo Tassi |
spellingShingle |
Masha Shcherbina Brunello Tirozzi Camillo Tassi Quantum Hopfield Model Physics disordered systems patterns self-averaging overlap parameters free-energy |
author_facet |
Masha Shcherbina Brunello Tirozzi Camillo Tassi |
author_sort |
Masha Shcherbina |
title |
Quantum Hopfield Model |
title_short |
Quantum Hopfield Model |
title_full |
Quantum Hopfield Model |
title_fullStr |
Quantum Hopfield Model |
title_full_unstemmed |
Quantum Hopfield Model |
title_sort |
quantum hopfield model |
publisher |
MDPI AG |
series |
Physics |
issn |
2624-8174 |
publishDate |
2020-05-01 |
description |
We find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of <i>N</i> qubits. The coupling among the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>σ</mi> <mi>i</mi> <mi>z</mi> </msubsup> </semantics> </math> </inline-formula> is a long range two-body random interaction. The randomness in the couplings is the typical interaction of the Hopfield model with <i>p</i> patterns (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>), where the patterns are <i>p</i> sequences of <i>N</i> independent identically distributed random variables (i.i.d.r.v.), assuming values <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> with probability <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. We show also that in the case <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>≤</mo> <mi>α</mi> <mi>N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, the free-energy is asymptotically independent from the choice of the patterns, i.e., it is self-averaging. |
topic |
disordered systems patterns self-averaging overlap parameters free-energy |
url |
https://www.mdpi.com/2624-8174/2/2/12 |
work_keys_str_mv |
AT mashashcherbina quantumhopfieldmodel AT brunellotirozzi quantumhopfieldmodel AT camillotassi quantumhopfieldmodel |
_version_ |
1724642338154741760 |