Lepton Pair Čerenkov Radiation Emitted by Tachyonic Neutrinos: Lorentz-Covariant Approach and IceCube Data

Current experiments do not exclude the possibility that one or more neutrinos are very slightly superluminal or that they have a very small tachyonic mass. Important bounds on the size of a hypothetical tachyonic neutrino mass term are set by lepton pair Čerenkov radiation (LPCR), that is, by the de...

Full description

Bibliographic Details
Main Authors: Ulrich D. Jentschura, Robert Ehrlich
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2016/4764981
Description
Summary:Current experiments do not exclude the possibility that one or more neutrinos are very slightly superluminal or that they have a very small tachyonic mass. Important bounds on the size of a hypothetical tachyonic neutrino mass term are set by lepton pair Čerenkov radiation (LPCR), that is, by the decay channel ν→e+e-ν, which proceeds via a virtual Z0 boson. Here, we use a Lorentz-invariant dispersion relation which leads to very tight constraints on the tachyonic mass of neutrinos; we also calculate decay and energy loss rates. A possible cutoff seen in the IceCube neutrino spectrum for Eν>2 PeV, due to the potential onset of LPCR, is discussed.
ISSN:1687-7357
1687-7365