Decomposition of complete graphs into small graphs

In 1967, A. Rosa proved that if a bipartite graph \(G\) with \(n\) edges has an \(\alpha\)-labeling, then for any positive integer \(p\) the complete graph \(K_{2np+1}\) can be cyclically decomposed into copies of \(G\). This has become a part of graph theory folklore since then. In this note we pro...

Full description

Bibliographic Details
Main Author: Dalibor Froncek
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2010-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol30/3/art/opuscula_math_3021.pdf
Description
Summary:In 1967, A. Rosa proved that if a bipartite graph \(G\) with \(n\) edges has an \(\alpha\)-labeling, then for any positive integer \(p\) the complete graph \(K_{2np+1}\) can be cyclically decomposed into copies of \(G\). This has become a part of graph theory folklore since then. In this note we prove a generalization of this result. We show that every bipartite graph \(H\) which decomposes \(K_k\) and \(K_m\) also decomposes \(K_{km}\).
ISSN:1232-9274