Lyapunov Stability Analysis of a Delayed Foot-and-Mouth Disease Model with Animal Vaccination

Foot-and-mouth disease virus remains one of the most important livestock diseases in sub-Saharan Africa and several Southeast Asian countries. Vaccination of livestock has been recognized as an important tool for the control of foot-and-mouth disease virus. However, this intervention strategy has so...

Full description

Bibliographic Details
Main Authors: Tinashe B. Gashirai, Senelani D. Hove-Musekwa, Steady Mushayabasa
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/3891057
Description
Summary:Foot-and-mouth disease virus remains one of the most important livestock diseases in sub-Saharan Africa and several Southeast Asian countries. Vaccination of livestock has been recognized as an important tool for the control of foot-and-mouth disease virus. However, this intervention strategy has some limitations. Generally, vaccine production is a complex multistep process which involves development, manufacturing, and delivery processes, and through this extensive process, some challenges such as poor vaccine storage often arise. More often, these challenges alter the validity of the vaccination. Foot-and-mouth disease virus epidemic dynamics have been extensively explored, but understanding the role of vaccination validity on virus endemicity is lacking. We present a time-delayed foot-and-mouth disease model that incorporates relevant biological and ecological factors, vaccination effects, and disease carriers. We determined the basic reproduction number and demonstrated that it is an important metric for persistence and extinction of the disease in the community. Numerical illustrations were utilised to support some of the analytical results.
ISSN:1026-0226
1607-887X