Mixed-mode crack tip fields in a polycrystalline aluminum alloy
Carefully performed experiments with long cracks in the near-threshold regime have shown that the crack tip field of these cracks significantly deviate from the expected mode-I butterfly-shaped ones and resemble strongly to mixed-mode crack tip fields. A simulation study using a crystal plasticity (...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2019/49/matecconf_icmff1218_11004.pdf |
Summary: | Carefully performed experiments with long cracks in the near-threshold regime have shown that the crack tip field of these cracks significantly deviate from the expected mode-I butterfly-shaped ones and resemble strongly to mixed-mode crack tip fields. A simulation study using a crystal plasticity (CP) approach has been utilized in order to understand this phenomenon. To this end, a digital twin of an aluminum sample fatigued in the near-threshold regime was generated with the help of electron backscatter diffraction (EBSD) and X-ray tomography. Once set-up, the digital twin was loaded in uniaxial tension using the fast spectral solver implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK). The versatility of this experimental-computational approach for studying the strain partitioning at the crack tip is demonstrated in this work. |
---|---|
ISSN: | 2261-236X |