The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 °C, primarily du...

Full description

Bibliographic Details
Main Authors: S. L. Lavender, R. K. Hoeke, D. J. Abbs
Format: Article
Language:English
Published: Copernicus Publications 2018-03-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://www.nat-hazards-earth-syst-sci.net/18/795/2018/nhess-18-795-2018.pdf
id doaj-caacf116880744e7ae35e254bee89585
record_format Article
spelling doaj-caacf116880744e7ae35e254bee895852020-11-24T22:43:48ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812018-03-011879580510.5194/nhess-18-795-2018The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity studyS. L. Lavender0R. K. Hoeke1D. J. Abbs2Climate Science Centre, CSIRO Oceans and Atmosphere, PMB1, Aspendale, VIC, 3195, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, PMB1, Aspendale, VIC, 3195, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, PMB1, Aspendale, VIC, 3195, AustraliaTropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between −4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. <br><br> An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. <br><br> In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.https://www.nat-hazards-earth-syst-sci.net/18/795/2018/nhess-18-795-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author S. L. Lavender
R. K. Hoeke
D. J. Abbs
spellingShingle S. L. Lavender
R. K. Hoeke
D. J. Abbs
The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
Natural Hazards and Earth System Sciences
author_facet S. L. Lavender
R. K. Hoeke
D. J. Abbs
author_sort S. L. Lavender
title The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
title_short The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
title_full The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
title_fullStr The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
title_full_unstemmed The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
title_sort influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone yasi: a sensitivity study
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2018-03-01
description Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between −4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. <br><br> An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. <br><br> In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.
url https://www.nat-hazards-earth-syst-sci.net/18/795/2018/nhess-18-795-2018.pdf
work_keys_str_mv AT sllavender theinfluenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
AT rkhoeke theinfluenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
AT djabbs theinfluenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
AT sllavender influenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
AT rkhoeke influenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
AT djabbs influenceofseasurfacetemperatureontheintensityandassociatedstormsurgeoftropicalcycloneyasiasensitivitystudy
_version_ 1725694465160511488