Spinorial R operator and Algebraic Bethe Ansatz

We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal al...

Full description

Bibliographic Details
Main Authors: D. Karakhanyan, R. Kirschner
Format: Article
Language:English
Published: Elsevier 2020-02-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321319303918
id doaj-caac954780104696aa11c9d07f6dcbe1
record_format Article
spelling doaj-caac954780104696aa11c9d07f6dcbe12020-11-25T02:00:20ZengElsevierNuclear Physics B0550-32132020-02-01951Spinorial R operator and Algebraic Bethe AnsatzD. Karakhanyan0R. Kirschner1Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan, ArmeniaInstitut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany; Corresponding author.We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal algebras and the corresponding RTT algebras. Coincidences with fundamental R matrices allow to relate the Algebraic Bethe Ansatz for spinor and vector monodromy matrices.http://www.sciencedirect.com/science/article/pii/S0550321319303918
collection DOAJ
language English
format Article
sources DOAJ
author D. Karakhanyan
R. Kirschner
spellingShingle D. Karakhanyan
R. Kirschner
Spinorial R operator and Algebraic Bethe Ansatz
Nuclear Physics B
author_facet D. Karakhanyan
R. Kirschner
author_sort D. Karakhanyan
title Spinorial R operator and Algebraic Bethe Ansatz
title_short Spinorial R operator and Algebraic Bethe Ansatz
title_full Spinorial R operator and Algebraic Bethe Ansatz
title_fullStr Spinorial R operator and Algebraic Bethe Ansatz
title_full_unstemmed Spinorial R operator and Algebraic Bethe Ansatz
title_sort spinorial r operator and algebraic bethe ansatz
publisher Elsevier
series Nuclear Physics B
issn 0550-3213
publishDate 2020-02-01
description We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal algebras and the corresponding RTT algebras. Coincidences with fundamental R matrices allow to relate the Algebraic Bethe Ansatz for spinor and vector monodromy matrices.
url http://www.sciencedirect.com/science/article/pii/S0550321319303918
work_keys_str_mv AT dkarakhanyan spinorialroperatorandalgebraicbetheansatz
AT rkirschner spinorialroperatorandalgebraicbetheansatz
_version_ 1724961221968396288