Spinorial R operator and Algebraic Bethe Ansatz
We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal al...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-02-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321319303918 |
id |
doaj-caac954780104696aa11c9d07f6dcbe1 |
---|---|
record_format |
Article |
spelling |
doaj-caac954780104696aa11c9d07f6dcbe12020-11-25T02:00:20ZengElsevierNuclear Physics B0550-32132020-02-01951Spinorial R operator and Algebraic Bethe AnsatzD. Karakhanyan0R. Kirschner1Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan, ArmeniaInstitut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany; Corresponding author.We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal algebras and the corresponding RTT algebras. Coincidences with fundamental R matrices allow to relate the Algebraic Bethe Ansatz for spinor and vector monodromy matrices.http://www.sciencedirect.com/science/article/pii/S0550321319303918 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
D. Karakhanyan R. Kirschner |
spellingShingle |
D. Karakhanyan R. Kirschner Spinorial R operator and Algebraic Bethe Ansatz Nuclear Physics B |
author_facet |
D. Karakhanyan R. Kirschner |
author_sort |
D. Karakhanyan |
title |
Spinorial R operator and Algebraic Bethe Ansatz |
title_short |
Spinorial R operator and Algebraic Bethe Ansatz |
title_full |
Spinorial R operator and Algebraic Bethe Ansatz |
title_fullStr |
Spinorial R operator and Algebraic Bethe Ansatz |
title_full_unstemmed |
Spinorial R operator and Algebraic Bethe Ansatz |
title_sort |
spinorial r operator and algebraic bethe ansatz |
publisher |
Elsevier |
series |
Nuclear Physics B |
issn |
0550-3213 |
publishDate |
2020-02-01 |
description |
We propose a new approach to the spinor-spinor R-matrix with orthogonal and symplectic symmetry. Based on this approach and the fusion method we relate the spinor-vector and vector-vector monodromy matrices for quantum spin chains. We consider the explicit spinor R matrices of low rank orthogonal algebras and the corresponding RTT algebras. Coincidences with fundamental R matrices allow to relate the Algebraic Bethe Ansatz for spinor and vector monodromy matrices. |
url |
http://www.sciencedirect.com/science/article/pii/S0550321319303918 |
work_keys_str_mv |
AT dkarakhanyan spinorialroperatorandalgebraicbetheansatz AT rkirschner spinorialroperatorandalgebraicbetheansatz |
_version_ |
1724961221968396288 |