Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy

Summary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-i...

Full description

Bibliographic Details
Main Authors: Kathrin Renner, Christina Bruss, Annette Schnell, Gudrun Koehl, Holger M. Becker, Matthias Fante, Ayse-Nur Menevse, Nathalie Kauer, Raquel Blazquez, Lisa Hacker, Sonja-Maria Decking, Toszka Bohn, Stephanie Faerber, Katja Evert, Lisa Aigle, Sabine Amslinger, Maria Landa, Oscar Krijgsman, Elisa A. Rozeman, Christina Brummer, Peter J. Siska, Katrin Singer, Stefanie Pektor, Matthias Miederer, Katrin Peter, Eva Gottfried, Wolfgang Herr, Ibtisam Marchiq, Jacques Pouyssegur, William R. Roush, SuFey Ong, Sarah Warren, Tobias Pukrop, Philipp Beckhove, Sven A. Lang, Tobias Bopp, Christian U. Blank, John L. Cleveland, Peter J. Oefner, Katja Dettmer, Mark Selby, Marina Kreutz
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124719311234
id doaj-ca9683bbded745c68d1cf4f71ab912e4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Kathrin Renner
Christina Bruss
Annette Schnell
Gudrun Koehl
Holger M. Becker
Matthias Fante
Ayse-Nur Menevse
Nathalie Kauer
Raquel Blazquez
Lisa Hacker
Sonja-Maria Decking
Toszka Bohn
Stephanie Faerber
Katja Evert
Lisa Aigle
Sabine Amslinger
Maria Landa
Oscar Krijgsman
Elisa A. Rozeman
Christina Brummer
Peter J. Siska
Katrin Singer
Stefanie Pektor
Matthias Miederer
Katrin Peter
Eva Gottfried
Wolfgang Herr
Ibtisam Marchiq
Jacques Pouyssegur
William R. Roush
SuFey Ong
Sarah Warren
Tobias Pukrop
Philipp Beckhove
Sven A. Lang
Tobias Bopp
Christian U. Blank
John L. Cleveland
Peter J. Oefner
Katja Dettmer
Mark Selby
Marina Kreutz
spellingShingle Kathrin Renner
Christina Bruss
Annette Schnell
Gudrun Koehl
Holger M. Becker
Matthias Fante
Ayse-Nur Menevse
Nathalie Kauer
Raquel Blazquez
Lisa Hacker
Sonja-Maria Decking
Toszka Bohn
Stephanie Faerber
Katja Evert
Lisa Aigle
Sabine Amslinger
Maria Landa
Oscar Krijgsman
Elisa A. Rozeman
Christina Brummer
Peter J. Siska
Katrin Singer
Stefanie Pektor
Matthias Miederer
Katrin Peter
Eva Gottfried
Wolfgang Herr
Ibtisam Marchiq
Jacques Pouyssegur
William R. Roush
SuFey Ong
Sarah Warren
Tobias Pukrop
Philipp Beckhove
Sven A. Lang
Tobias Bopp
Christian U. Blank
John L. Cleveland
Peter J. Oefner
Katja Dettmer
Mark Selby
Marina Kreutz
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
Cell Reports
author_facet Kathrin Renner
Christina Bruss
Annette Schnell
Gudrun Koehl
Holger M. Becker
Matthias Fante
Ayse-Nur Menevse
Nathalie Kauer
Raquel Blazquez
Lisa Hacker
Sonja-Maria Decking
Toszka Bohn
Stephanie Faerber
Katja Evert
Lisa Aigle
Sabine Amslinger
Maria Landa
Oscar Krijgsman
Elisa A. Rozeman
Christina Brummer
Peter J. Siska
Katrin Singer
Stefanie Pektor
Matthias Miederer
Katrin Peter
Eva Gottfried
Wolfgang Herr
Ibtisam Marchiq
Jacques Pouyssegur
William R. Roush
SuFey Ong
Sarah Warren
Tobias Pukrop
Philipp Beckhove
Sven A. Lang
Tobias Bopp
Christian U. Blank
John L. Cleveland
Peter J. Oefner
Katja Dettmer
Mark Selby
Marina Kreutz
author_sort Kathrin Renner
title Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
title_short Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
title_full Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
title_fullStr Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
title_full_unstemmed Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
title_sort restricting glycolysis preserves t cell effector functions and augments checkpoint therapy
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2019-10-01
description Summary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials. : Renner et al. demonstrate a negative correlation between glycolytic activity in tumors and response to checkpoint therapy. Genetic blockade of glycolysis or pharmacological inhibition of the main lactate transporters MCT1 and MCT4 preserves T cell function, reverses tumor acidification, and augments response to checkpoint therapy. Keywords: checkpoint, glycolysis, monocarboxylate transporters, lactate, acidification, diclofenac, T cells, NK cells, interferon gamma, tumor
url http://www.sciencedirect.com/science/article/pii/S2211124719311234
work_keys_str_mv AT kathrinrenner restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT christinabruss restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT annetteschnell restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT gudrunkoehl restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT holgermbecker restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT matthiasfante restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT aysenurmenevse restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT nathaliekauer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT raquelblazquez restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT lisahacker restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT sonjamariadecking restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT toszkabohn restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT stephaniefaerber restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT katjaevert restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT lisaaigle restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT sabineamslinger restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT marialanda restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT oscarkrijgsman restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT elisaarozeman restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT christinabrummer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT peterjsiska restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT katrinsinger restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT stefaniepektor restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT matthiasmiederer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT katrinpeter restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT evagottfried restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT wolfgangherr restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT ibtisammarchiq restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT jacquespouyssegur restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT williamrroush restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT sufeyong restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT sarahwarren restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT tobiaspukrop restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT philippbeckhove restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT svenalang restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT tobiasbopp restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT christianublank restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT johnlcleveland restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT peterjoefner restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT katjadettmer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT markselby restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
AT marinakreutz restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy
_version_ 1724943918414430208
spelling doaj-ca9683bbded745c68d1cf4f71ab912e42020-11-25T02:04:12ZengElsevierCell Reports2211-12472019-10-01291135150.e9Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint TherapyKathrin Renner0Christina Bruss1Annette Schnell2Gudrun Koehl3Holger M. Becker4Matthias Fante5Ayse-Nur Menevse6Nathalie Kauer7Raquel Blazquez8Lisa Hacker9Sonja-Maria Decking10Toszka Bohn11Stephanie Faerber12Katja Evert13Lisa Aigle14Sabine Amslinger15Maria Landa16Oscar Krijgsman17Elisa A. Rozeman18Christina Brummer19Peter J. Siska20Katrin Singer21Stefanie Pektor22Matthias Miederer23Katrin Peter24Eva Gottfried25Wolfgang Herr26Ibtisam Marchiq27Jacques Pouyssegur28William R. Roush29SuFey Ong30Sarah Warren31Tobias Pukrop32Philipp Beckhove33Sven A. Lang34Tobias Bopp35Christian U. Blank36John L. Cleveland37Peter J. Oefner38Katja Dettmer39Mark Selby40Marina Kreutz41Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany; Corresponding authorDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Surgery, University Hospital Regensburg, Regensburg, GermanyDivision of General Zoology, University of Kaiserslautern, Kaiserslautern, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyRegensburg Center for Interventional Immunology, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Pathology, University of Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Organic Chemistry, University of Regensburg, Regensburg, GermanyInstitute of Organic Chemistry, University of Regensburg, Regensburg, GermanyDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, GermanyDepartment of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, FranceInstitute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France; Department of Medical Biology, Scientific Centre of Monaco (CSM), MonacoDepartment of Chemistry, The Scripps Research Institute, Scripps-Florida, Jupiter, FL, USANanoString Technologies, Seattle, WA, USANanoString Technologies, Seattle, WA, USADepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyRegensburg Center for Interventional Immunology, Regensburg, GermanyDepartment of General and Visceral Surgery, Medical Center, Faculty of Medicine University of Freiburg, Freiburg, GermanyInstitute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), UMC Mainz, Mainz, Germany; University Cancer Center Mainz, UMC Mainz, Mainz, Germany; German Cancer Consortium (DKTK), Heidelberg, GermanyDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USAInstitute of Functional Genomics, University of Regensburg, Regensburg, GermanyInstitute of Functional Genomics, University of Regensburg, Regensburg, GermanyBristol-Myers Squibb, Redwood City, CA, USADepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, GermanySummary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials. : Renner et al. demonstrate a negative correlation between glycolytic activity in tumors and response to checkpoint therapy. Genetic blockade of glycolysis or pharmacological inhibition of the main lactate transporters MCT1 and MCT4 preserves T cell function, reverses tumor acidification, and augments response to checkpoint therapy. Keywords: checkpoint, glycolysis, monocarboxylate transporters, lactate, acidification, diclofenac, T cells, NK cells, interferon gamma, tumorhttp://www.sciencedirect.com/science/article/pii/S2211124719311234