Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy
Summary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-i...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-10-01
|
Series: | Cell Reports |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124719311234 |
id |
doaj-ca9683bbded745c68d1cf4f71ab912e4 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kathrin Renner Christina Bruss Annette Schnell Gudrun Koehl Holger M. Becker Matthias Fante Ayse-Nur Menevse Nathalie Kauer Raquel Blazquez Lisa Hacker Sonja-Maria Decking Toszka Bohn Stephanie Faerber Katja Evert Lisa Aigle Sabine Amslinger Maria Landa Oscar Krijgsman Elisa A. Rozeman Christina Brummer Peter J. Siska Katrin Singer Stefanie Pektor Matthias Miederer Katrin Peter Eva Gottfried Wolfgang Herr Ibtisam Marchiq Jacques Pouyssegur William R. Roush SuFey Ong Sarah Warren Tobias Pukrop Philipp Beckhove Sven A. Lang Tobias Bopp Christian U. Blank John L. Cleveland Peter J. Oefner Katja Dettmer Mark Selby Marina Kreutz |
spellingShingle |
Kathrin Renner Christina Bruss Annette Schnell Gudrun Koehl Holger M. Becker Matthias Fante Ayse-Nur Menevse Nathalie Kauer Raquel Blazquez Lisa Hacker Sonja-Maria Decking Toszka Bohn Stephanie Faerber Katja Evert Lisa Aigle Sabine Amslinger Maria Landa Oscar Krijgsman Elisa A. Rozeman Christina Brummer Peter J. Siska Katrin Singer Stefanie Pektor Matthias Miederer Katrin Peter Eva Gottfried Wolfgang Herr Ibtisam Marchiq Jacques Pouyssegur William R. Roush SuFey Ong Sarah Warren Tobias Pukrop Philipp Beckhove Sven A. Lang Tobias Bopp Christian U. Blank John L. Cleveland Peter J. Oefner Katja Dettmer Mark Selby Marina Kreutz Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy Cell Reports |
author_facet |
Kathrin Renner Christina Bruss Annette Schnell Gudrun Koehl Holger M. Becker Matthias Fante Ayse-Nur Menevse Nathalie Kauer Raquel Blazquez Lisa Hacker Sonja-Maria Decking Toszka Bohn Stephanie Faerber Katja Evert Lisa Aigle Sabine Amslinger Maria Landa Oscar Krijgsman Elisa A. Rozeman Christina Brummer Peter J. Siska Katrin Singer Stefanie Pektor Matthias Miederer Katrin Peter Eva Gottfried Wolfgang Herr Ibtisam Marchiq Jacques Pouyssegur William R. Roush SuFey Ong Sarah Warren Tobias Pukrop Philipp Beckhove Sven A. Lang Tobias Bopp Christian U. Blank John L. Cleveland Peter J. Oefner Katja Dettmer Mark Selby Marina Kreutz |
author_sort |
Kathrin Renner |
title |
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy |
title_short |
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy |
title_full |
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy |
title_fullStr |
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy |
title_full_unstemmed |
Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy |
title_sort |
restricting glycolysis preserves t cell effector functions and augments checkpoint therapy |
publisher |
Elsevier |
series |
Cell Reports |
issn |
2211-1247 |
publishDate |
2019-10-01 |
description |
Summary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials. : Renner et al. demonstrate a negative correlation between glycolytic activity in tumors and response to checkpoint therapy. Genetic blockade of glycolysis or pharmacological inhibition of the main lactate transporters MCT1 and MCT4 preserves T cell function, reverses tumor acidification, and augments response to checkpoint therapy. Keywords: checkpoint, glycolysis, monocarboxylate transporters, lactate, acidification, diclofenac, T cells, NK cells, interferon gamma, tumor |
url |
http://www.sciencedirect.com/science/article/pii/S2211124719311234 |
work_keys_str_mv |
AT kathrinrenner restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT christinabruss restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT annetteschnell restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT gudrunkoehl restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT holgermbecker restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT matthiasfante restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT aysenurmenevse restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT nathaliekauer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT raquelblazquez restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT lisahacker restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT sonjamariadecking restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT toszkabohn restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT stephaniefaerber restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT katjaevert restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT lisaaigle restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT sabineamslinger restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT marialanda restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT oscarkrijgsman restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT elisaarozeman restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT christinabrummer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT peterjsiska restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT katrinsinger restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT stefaniepektor restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT matthiasmiederer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT katrinpeter restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT evagottfried restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT wolfgangherr restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT ibtisammarchiq restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT jacquespouyssegur restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT williamrroush restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT sufeyong restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT sarahwarren restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT tobiaspukrop restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT philippbeckhove restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT svenalang restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT tobiasbopp restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT christianublank restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT johnlcleveland restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT peterjoefner restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT katjadettmer restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT markselby restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy AT marinakreutz restrictingglycolysispreservestcelleffectorfunctionsandaugmentscheckpointtherapy |
_version_ |
1724943918414430208 |
spelling |
doaj-ca9683bbded745c68d1cf4f71ab912e42020-11-25T02:04:12ZengElsevierCell Reports2211-12472019-10-01291135150.e9Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint TherapyKathrin Renner0Christina Bruss1Annette Schnell2Gudrun Koehl3Holger M. Becker4Matthias Fante5Ayse-Nur Menevse6Nathalie Kauer7Raquel Blazquez8Lisa Hacker9Sonja-Maria Decking10Toszka Bohn11Stephanie Faerber12Katja Evert13Lisa Aigle14Sabine Amslinger15Maria Landa16Oscar Krijgsman17Elisa A. Rozeman18Christina Brummer19Peter J. Siska20Katrin Singer21Stefanie Pektor22Matthias Miederer23Katrin Peter24Eva Gottfried25Wolfgang Herr26Ibtisam Marchiq27Jacques Pouyssegur28William R. Roush29SuFey Ong30Sarah Warren31Tobias Pukrop32Philipp Beckhove33Sven A. Lang34Tobias Bopp35Christian U. Blank36John L. Cleveland37Peter J. Oefner38Katja Dettmer39Mark Selby40Marina Kreutz41Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany; Corresponding authorDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Surgery, University Hospital Regensburg, Regensburg, GermanyDivision of General Zoology, University of Kaiserslautern, Kaiserslautern, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyRegensburg Center for Interventional Immunology, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Pathology, University of Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Organic Chemistry, University of Regensburg, Regensburg, GermanyInstitute of Organic Chemistry, University of Regensburg, Regensburg, GermanyDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, GermanyDepartment of Nuclear Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyDepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyInstitute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, FranceInstitute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France; Department of Medical Biology, Scientific Centre of Monaco (CSM), MonacoDepartment of Chemistry, The Scripps Research Institute, Scripps-Florida, Jupiter, FL, USANanoString Technologies, Seattle, WA, USANanoString Technologies, Seattle, WA, USADepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, GermanyRegensburg Center for Interventional Immunology, Regensburg, GermanyDepartment of General and Visceral Surgery, Medical Center, Faculty of Medicine University of Freiburg, Freiburg, GermanyInstitute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), UMC Mainz, Mainz, Germany; University Cancer Center Mainz, UMC Mainz, Mainz, Germany; German Cancer Consortium (DKTK), Heidelberg, GermanyDepartment Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the NetherlandsDepartment of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USAInstitute of Functional Genomics, University of Regensburg, Regensburg, GermanyInstitute of Functional Genomics, University of Regensburg, Regensburg, GermanyBristol-Myers Squibb, Redwood City, CA, USADepartment of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, GermanySummary: Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials. : Renner et al. demonstrate a negative correlation between glycolytic activity in tumors and response to checkpoint therapy. Genetic blockade of glycolysis or pharmacological inhibition of the main lactate transporters MCT1 and MCT4 preserves T cell function, reverses tumor acidification, and augments response to checkpoint therapy. Keywords: checkpoint, glycolysis, monocarboxylate transporters, lactate, acidification, diclofenac, T cells, NK cells, interferon gamma, tumorhttp://www.sciencedirect.com/science/article/pii/S2211124719311234 |