Simulation of a gas and air flow exhausted by production equipment
The paper provides the results of researching the influence of the gas and air flow at the exit from the pipeline of the technological channel on the performance of a gas and air power unit. It has been determined that in order to obtain the maximum electrical energy by the gas and air power unit, i...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PC Technology Center
2018-03-01
|
Series: | Eastern-European Journal of Enterprise Technologies |
Subjects: | |
Online Access: | http://journals.uran.ua/eejet/article/view/126903 |
Summary: | The paper provides the results of researching the influence of the gas and air flow at the exit from the pipeline of the technological channel on the performance of a gas and air power unit. It has been determined that in order to obtain the maximum electrical energy by the gas and air power unit, it is necessary to take into account the influence of the gas and air flow. In this case, the location of the generator’s propeller in the field of the gas and air flow has a significant effect. The energy parameters of the gas and air flow are influenced by the parameters of the fan, the generator, the process channel and the generator’s propeller. A technique was developed to analyse changes in the speed of the gas and air flow at the exit from the pipeline. The physical equations included in the method characterize the processes occurring in the gas and air channel. In this case, the law of conservation of mass and the pressure balance in the form of a system of differential equations for a section before and after the propeller of the generator are used. The dependencies of the air flow rate variation on the output power of different types of fans are calculated. It has been shown that in order to increase the air flow speed at the exit from the pipeline, it is necessary to increase the output power of the fans.
A mathematical model was constructed to analyse gas and air flows before and after the propeller of the generator when changing its distance from the process channel exit, its parameters, and the parameters of the generator’s propeller. The model includes equations on the conservation of mass, momentum, and energy of a non-stationary spatial flow. The equations are represented in the Cartesian coordinate system that rotates with an angular velocity around the axis passing through its origin. The model also includes equations on the kinetic energy of turbulence and the dissipation of this energy. The study provides the results of the computer simulation of the process of distribution of the gas and air flow blown by a fan of the working unit. The research was done using the SolidWorks Flow Simulation software environment. The article presents the simulation results that helped obtain the recommended limits of the best location of the generator propeller in the field of the gas and air flow to produce the maximum amount of electrical power by the gas and air unit.
The adequacy of the obtained results of the computer simulation of the process of air flow production by a fan has been verified by conducting experimental tests on the laboratory facility. It has been determined that the practical value of the results obtained is the possibility of using the proposed analytical dependencies to develop algorithms for controlling the performance of the gas and air power unit. |
---|---|
ISSN: | 1729-3774 1729-4061 |